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Abstract 
Granite, graywacke, and metadiabase, presumably Precambrian in age, are found 

only in small isolated areas within the mapped region. 
An aggregate thickness of 2,400± feet of sediments, representing a part of each 

Paleozoic period, overlies the Precambrian rocks. Within the mapped area they are not 
exposed in a simple continuous sequence. The ages and chief lithologic characters of the 
Paleozoic rocks are:  (1) Cambrian (?) Bliss sandstone—hematitic, glauconitic, or 
.quartzose; (2) Ordovician El Paso limestone—bluish-gray slabby to massive, with 
abundant yellow-brown silty partings; (3) Ordovician Montoya limestone—basal 
sandstone, massive to thin, black or gray, limestone or dolomite, with abundant chert; 
(4) Silurian Fusselman dolomite—massive gray or brownish-gray; (5) Devonian Percha 
'hale—black fissile shale, green limy shale; (6) Mississippian Lake valley limestone—
gray to black massive limestones with chert and thin-bedded shaly limestone; (7) 
Pennsylvanian Magdalena limestone—massive limestone, shale; and (8) Permian Abo 
formation—massive red shale, red sandstone. Rock units 1 through 4 (above) contain 
little shale, whereas 5 through 8 have no dolomite. Igneous sills are much more 
abundant at the shale horizons in the upper Paleozoic rocks than elsewhere in the 
section, presumably because of the lower mechanical resistance of the shales. 

Tertiary igneous rocks may be divided into three groups, from oldest to youngest: 
(1) andesitic and latitic rocks, 'which include the intrusive quartz monzonite porphyry; 
(2) rhyolitic extrusives and intrusives; and (3) andesitic volcanic rocks. The total 
estimated thickness of the Tertiary volcanics is approximately 3,000 feet. Terrestrial 
conglomerates, sandstones, and shales occurring in a nearby area between the rocks of 
items 2 and 3 (above) contain a fossil flora dated between the limits early Miocene and 
early Pliocene. The andesitic and latitic rocks (item 1, above) are intensely altered on a 
regional scale, whereas the younger igneous rocks are not. 

Feldspars in the shallow depth quartz monzonite porphyry dikes and sills exhibit 
optical anomalies suggesting that both high- and low-temperature forms are present. 

The tuffaceous rhyolite, with both pyroclastic and flow features, probably flowed 
for the most part either as a loose, granular, essentially solid mass lubricated by liquid, 
or by means of actual liquid flow. Oxidized biotite of the tuffaceous rhyolite may 
indicate a temperature during extrusion greater than 400°-500°C, whereas the green 
hornblende may represent one or more of the following: (a) conversion from the brown 
to the green varieties during cooling, (b) an extrusion temperature below 850° C, or (c) a 
low oxygen concentration during the extrusion. Large concentrations of xenoliths in the 
tuffaceous rhyolite may either represent a vent agglomerate or indicate proximity to a 
fissure zone. Such xenolith zones are geologically contemporaneous and 
consanguineous with the enclosing tuffaceous rhyolite. 

Abundant intrusive rhyolitic bodies, consanguineous with the extrusive tuffaceous 
rhyolite on the basis of compositional and textural 
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similarity, suggest proximity to a major eruptive center. Both intrusive and extrusive 
rhyolitic rocks may have been emplaced as crystalline, and glassy, granular masses. The 
following features, commonly regarded as being restricted to plutonic rocks, occur in 
this volcanic igneous environment: (1) quartz-sanidine pegmatite bodies in rhyolite por-
phyry; (2) even-grained xenomorphic-granular lenses in rhyolite porphyry; (3) primary 
granophyric phenocrysts, which appear to have formed by eutectic crystallization and by 
sanidine crystallization on corroded quartz phenocrysts, in glassy rhyolitic dikes 
containing 10 percent phenocrysts; (4) perthitic phenocrysts in a rhyolitic sill; (5) geo-
chemical culminations in silicon and potassium produced by a lack of equilibrium during 
the formation of crystalline reaction rims about accidental xenoliths enclosed in rhyolite 
vitrophyre. 

The above phenomena do not substantiate the hypothesis that volcanic processes 
cannot produce plutonic features. 

Late andesite flows and agglomerates display a repeated cyclical sequence ranging 
from massive flow rock through scoriaceous rock in turn overlain by a pumiceous 
agglomerate, and are partly interbedded with the early gravel deposits. 

Quaternary events include deposition of later gravels, formation of several stream 
terraces, and erosional dissection of the Black Range. 

Moderate folding of the sediments resulted probably from their adjustment to the 
undulatory surface produced by a highly-faulted basement complex, with possible 
assistance from igneous intrusive forces. Thus, high-angle normal faulting, 
predominantly of a north-south trend, appears to be the major structural determinant. 
Faults are more abundant in the pre-Devonian rocks, because the Percha shale was 
capable of plastic deformation and thereby compensated for, and insulated the upper 
Paleozoic rocks from, minor ruptures in the earth's crust. The major periods of faulting 
were concluded before the eruption of the rhyolitic rocks. 

The best explanation of the extremely irregular distribution of the quartz 
monzonite porphyry is that it was emplaced along high-angle faults or fractured zones, 
and spread laterally into shale horizons of low mechanical resistance. 

Lead, zinc, silver, manganese, copper, and gold ores with an estimated total value 
of more than 7 million dollars have been produced from the Kingston mining district, the 
Gray Eagle, and Grandview mines. Discontinuous pockets of high-grade ore have been 
found in fissures and fault zones, or as replacement bodies in the Fusselman, Montoya, 
and El Paso limestones and dolomites, which would, barring erosion, underlie the Percha 
shale. The ore deposits were formed after the quartz monzonite porphyry was emplaced 
and before all younger rocks were formed. Future exploration for ore deposits not now 
exposed at the surface might well be directed toward areas of arched Paleozoic rocks or 
those areas where Paleozoic rocks are covered by sills of the quartz monzonite porphyry. 



Introduction 
The area studied is a narrow strip across the Black Range along State Highway 

180, in Sierra and Grant Counties, New Mexico. The townsite of Kingston, which lies 
approximately 50 miles east of Silver City, is at the eastern boundary of the mapped area 
(see index map, pl 1, in Pocket). 

Most of the previous geologic work has been confined to investigations of the 
mining districts, especially those in the vicinity of Kingston. Lindgren, Graton, and 
Gordon (1910) recognized and differentiated some of the stratigraphy, outlined the major 
structural features of New Mexico, and investigated most of the mining districts. Darton's 
(1928-a, 1928-b) excellent reconnaissance work included part of this area. Harley's 
(1934) reconnaissance and detailed mining report on Sierra County includes the eastern 
third of the mapped area (see pl 1). No other work has been done except for numerous 
United States Bureau of Mines investigations, some of which contain maps of mine 
localities. 

Physiographically the region is in the Mexican Highland portion of the Basin and 
Range province (Fenneman, 1931), which consists largely of dissected block mountains 
separated by alluvial basins. Prominent and complex north-south faulting is well known, 
and Tertiary igneous activity, both intrusive and extrusive, is widespread. In the area 
under study, which is not far removed from the southern boundary of the greater 
Colorado Plateau, the following statement of Fenneman's. (1931, p 381) is applicable: "... 
the entire area when seen from a high point is one of irregular ridges and uplands without 
apparent plan or order. It does not in the least conform to the simple conception of basin 
ranges, but with its complicated history of intrusion, faulting, lava flows, and various 
erosion cycles it resembles still less the horizontal plateau on the north." 

This project is part of a regional study of the volcanic and sedimentary rocks, and 
their relation to the ore deposits, which is being undertaken by the New Mexico Bureau 
of Mines and Mineral Resources. In New Mexico volcanic rocks predominate north and 
west of "a line drawn from El Paso to the northeast corner" (Lindgren, Graton, and 
Gordon, 1910, p 42). In many localities where the volcanic rocks have been removed by 
erosion valuable ore deposits are found. Extrusive rocks cover the usual ore-bearing 
sediments in large parts of the state. Can some way be found to detect the presence of 
significant ore deposits now concealed by volcanic rocks? This study, the first of many 
related to the major project, is restricted to 60-odd square miles out of a total area of 
thousands of square miles; it provides, therefore, an inadequate sample to answer this and 
other questions satisfactorily. 

Geologic mapping was done primarily on aerial photographs (scale, 1:31,680) with 
assistance from the various maps listed on Plate 1. In addition, petrographic, chemical, 
and some X-ray determinations were carried out in the laboratory. 

The author believes that the significance of volcanic rocks with respect to the 
current discussion concerning the origin of plutonic 
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rocks (i.e., the granite problem) has not been properly evaluated, except in rare cases. 
Geologists apply very readily simple binary or ternary silicate phase-diagrams to explain 
composition and sequence of numerous plutonic rocks. This approach is validated by the 
high degree of correlation between these two. However, in many cases ambiguity results, 
and the final interpretation is unsatisfactory. Volcanic rocks, especially the acidic 
varieties, should be the object of increased study, because, in a sense, they may be 
considered as inter-mediate between the laboratory and the natural pluton. In addition, 
volcanic glass, primarily perlite, has become of economic importance. 

For these reasons, the rhyolitic igneous rocks, especially the volcanic glasses in the 
Black Range of New Mexico, have been studied in considerable detail. However, the 
problem of the origin, crystallization, and chemical variation of the volcanic glasses is 
still in its incipient stages. Nevertheless this presentation may be of value as a first 
approximation and as an aid in formulating new approaches to the problem. 
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Figure 1. GENERALIZED ROCK SECTION OF THE BLACK RANGE AT KINGSTON, NEW 
MEXICO. 
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Precambrian Sequence 
INTRODUCTION 

The oldest rocks in the Black Range are believed to be of Precambrian age because 
they have been intensely deformed in comparison with the overlying Paleozoic 
sediments and are unconformably overlain by a sandstone tentatively correlated with the 
Bliss sandstone of Cambrian or Early Ordovician (King, P.B., 1940) age. The secondary 
planar structures of the Precambrian graywacke, metadiabase, and granite dip in general 
60 degrees or more northward, although the strike varies considerably. Locally these 
rocks, especially the graywacke, have a lineation which deviates very little from a mode1 

of N. 63° E., 51° NE., bearing and plunge, respectively. Detailed mapping (see pl 1) has 
shown that the exposures of the Precambrian are small and discontinuous in the Kingston 
region, in contrast with an early reconnaissance map (Darton, 1928-b), which depicted a 
continuous narrow belt of Precambrian rocks elongated in a north-south direction, just 
west of the town of Kingston. 

 
GRAYWACKE 

The Precambrian sediments are best exposed along South Percha Creek for a 
distance slightly less than a mile, just downstream from the Gray Eagle mine. Another 
small exposure is found west of the crest of the range, approximately half a mile east of 
the Grandview mine. Because the graywacke crops out in a small area and is intensely 
folded and deformed, any estimate of its stratigraphic thickness would be of little 
significance. 

Megascopically the graywacke is fine- to coarse-grained, massive- to thin-bedded, 
gray to dark-green or black, weathering green to brown, and penetrated by a few thin 
quartz stringers which approach ptygmatic veins in appearance. Locally the graywacke 
shows graded bed-ding and commonly contains flattened and elongated pebbles in lenses 
and thin beds. The elongation of pebbles is due largely to post-depositional deformation, 
inasmuch as many of the pebbles show small-scale shearing and faulting. Some pebbles 
and granules are found even in the finest-grained beds. One small ripple-marked surface 
(4 by 6 feet) was seen, a rare feature in graywackes. The ripple-mark axes deviate about 
60 degrees from the adjacent lineations. It is believed that the angular discordance 
between the ripple marks and the unimodal lineation is a sufficient criterion for 
identifying these markings (Ingerson, 1940). 

A small mass of Precambrian rocks southwest of Emory Pass (pl 1) shows no 
positive evidence of sedimentary origin. These rocks are gray, fine-grained, with 
abundant small specks of chloritized hornblende (?), and are interbedded with thick to 
thin, black, fine-grained beds. 

1. The lineations were plotted on a Schmidt net, contoured, and the center of the area of 
greatest point-density was selected as the modal value. The distribution of the points is unimodal. 
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The microscopic texture of the Precambrian sediments along South Percha Creek is 
that of typical graywacke with angular grains of quartz, feldspar, and rock fragments 
distributed irregularly throughout the matrix. Sizes of grains range from 2 inches down to 
submicroscopic size. The rock fragments consist of quartzite, shale, graywacke, and 
possibly some considerably altered igneous rocks. Most grains have irregular, sutured 
contacts and are penetrated, on their boundaries, to a small extent by fibrous sericite and 
chlorite, suggesting slight replacement of the larger grains. The matrix is a fine-grained 
intergrowth of sericite, chlorite, and quartz. Magnetite and a few euhedral grains of 
sphene were also found. 

The sericite and chlorite show a slight alignment at a high angle to the bedding. 
Sparse grains of pyrite as well as veinlets of epidote and quartz form part of the rock. In 
one thinsection the matrix was found to be partly replaced by biotite grains several times 
larger than the usual sericite and chlorite grains in the matrix. The concentration and 
grain size of the biotite flakes is greatest around and within some of the large clastic 
grains. 
 

GRANITE 

Granite crops out in three small isolated areas north and north-west of Kingston. The 
age relation between the granite and the graywacke is not revealed in this area; however, 
both have been transected by metadiabase dikes. 

Megascopically the granite is massive, brown to pink, medium-grained, and 
weathers to a reddish brown or yellowish brown. It contains irregular dark-green to black 
masses of very fine-grained mafic minerals. 

The microscopic texture is holocrystalline, seriate xenomorphicgranular, and 
granophyric. Granophyric intergrowths exhibit patterns which are radial, cuneiform, 
subparallel elongated blebs, or irregular. Bent and microfaulted feldspar (see fig 2) and 
finely granulated quartz between grain boundaries and in microfaults suggest internal 
deformation of this rock. 

TABLE 1. ESTIMATED MODES OF THE 
PRECAMBRIAN PLUTONIC ROCKS 

 
GRANITE METADIABASE 

Perthite ........................................................49% 
Quartz ..........................................................38 
Plagioclase (An31) .......................................8 
Biotite ..........................................................5 
Magnetite and Ilmenite ...............................x 
Zircon, .........................................................x 
Fluorite ........................................................x 
Chlorite .......................................................x 
Total ----------------------------------------- 100% 

Hornblende .................................................51% 
Chlorite .......................................................33 
Biotite .........................................................2 
Magnetite and Ilmenite ..............................7 
Plagioclase (An11) ......................................7 
Epidote .......................................................x 

Total ............................................... 100% 

x Indicates present. 
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The estimated mode of the granite is listed in Table 1. The quartz occurs as anhedra 
showing undulatory extinction, in very fine grains between larger minerals, and as part of 
the granophyric intergrowths. 

Plagioclase has a maximum extinction of 16 degrees normal to (010), and an optic 
angle (2Vα) of 81 degrees. According to Kennedy's (1947) charts, this corresponds to a 
composition of An31. The plagioclase is anhedral, appears somewhat corroded, and is 
more clouded than the quartz or perthite. In general it is surrounded by a thin 
discontinuous clustering of fine quartz anhedra, which may extend into the plagioclase 
grain, or by the radiating type of granophyric intergrowth. For the most part the potash 
feldspar in the perthite is clear, untwinned„ and has optical properties corresponding very 
closely to those of orthoclase or microcline. Locally it has a barely perceptible fine grid-
twinning. Both the quartz and feldspar have abundant minute inclusions, which in some 
parts of the quartz are arranged in arcuate lines, suggesting distribution along irregular 
conchoidal surfaces. 

Biotite, pleochroic from dark green to colorless, occurs as small shreds in irregular 
aggregates and as thin shreds between the quartz, plagioclase, and granophyric grains. 
Accessory minerals include magnetite and zircon. 

Two varieties of minute veinlets, which intersect approximately at right angles, 
occur in the granite. The thicker veins are xenomorphicgranular quartz. Walls of the 
thinner veins are lined with an opaque material, which probably is magnetite, and the 
central part is fine-grained xenomorphic-granular quartz. Several cavities within this vein 
quartz are lined with a few small fluorite crystals. Megascopic veins of this nature were 
not observed. 

METADIABASE 
Metadiabase dikes were found to transect both the graywacke and granite in their 

respective outcrops. Nevertheless the secondary linear and planar features of the 
metadiabase are approximately parallel to those of the graywacke. The dike contacts 
truncate the graded bedding of the graywacke; the orientation of the dikes in the granite is 
random; and small inclusions of the Precambrian country rock are found in the 
metadiabase dikes. 

Megascopically the metadiabases are dark green to black, medium-to fine-grained 
rocks that contain abundant laths (5 mm and less) of a chloritic material, although in 
many places it is completely fine-grained. The rocks also contain ptygmaticlike quartz 
veinlets. 

Microscopically the diabase has a holocrystalline, seriate porphyritic fibrous texture 
and a very fine-grained groundmass. Internal deformation is manifested by the bent and 
shredded hornblende fibers (see fig 3). The estimated mode of a metadiabase is given in 
Table 1. 

Hornblende occurs as fibrous, prismatic grains, commonly bent or broken; many 
grains contain abundant ilmenite and albite inclusions, some of which are elongated 
parallel to the hornblende cleavage. The pleochroic orientation is: gamma, green; beta, 
pale greenish blue; and alpha, pale blue. 



 
Figure 2 (left). BENT PLAGIOCLASE WITH SOME FINELY GRANULATED QUARTZ ALONG FRACTURES. PRECAMBRIAN GRANITE. 
CROSSED NICOLS. 

Figure 3 (right). SHREDDED HORNBLENDE FIBERS IN METADIABASE. CROSSED NICOLS. 

DIAMETER OF FIELD IS 5 MM. 
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Chlorite occurs in fibrous and irregular masses and has apparently been formed by 
alteration of hornblende. Pleochroism ranges from green to colorless; the interference 
color is a first-order brownish gray, and the indices of refraction are lower than those of 
the hornblende. In many grains the alteration of hornblende to chlorite has apparently 
been preserved in intermediate stages. The net result is that some grains may have a 
chlorite index (relative to hornblende), a hornblende cleavage, and birefringence higher 
than chlorite. Universal-stage determinations have also given anomalous results. For this 
reason the estimated mode must be considered only as an approximation. 

Biotite is pleochroic from brown to colorless and occurs as small subhedral grains 
which are enclosed by hornblende. Magnetite and ilmenite, coated by leucoxene, occur as 
single anhedral grains (0.4 mm and less) or grain clusters. Plagioclase (An11) occurs in 
the groundmass as small anhedral grains enclosed by euhedrally terminated hornblende. 
Some hornblende grains also project slightly into thin dilation veins of plagioclase. 

The deduced order of mineral development on the basis of the mineral phenomena 
described above might be: 

1. Biotite replaced by hornblende. 
2. Formation of albitic plagioclase in cavities, and possibly as a replacement of 

other plagioclase and some of the hornblende. The hornblende growth may have been of 
longer duration than the albitization. 

3. Replacement of hornblende by chlorite. 

The effect of the deformational stresses involved in the folding of the Precambrian 
rocks was probably small, because primary sedimentary features have survived in the 
graywacke. In addition, the chlorite-sericite-biotite-quartz mineral assemblage of the 
graywacke suggests no more than a low-grade metamorphism. 



Paleozoic Stratigraphy 
INTRODUCTION 

Each Paleozoic system is represented in the structurally complex Kingston area, 
although individual systemic units are thin in comparison to those of adjoining regions. 
The total thickness of the Paleozoic rocks is about 2,400 feet (see fig 1). At no single 
locality in the area can the entire Paleozoic sequence be studied in a simple "layer cake" 
fashion, as has been suggested by Harley (1934, p 99). 

The Paleozoic rocks were studied megascopically, only, though some microscopic 
mineral determinations were made. Wherever possible, the affinity of the sediment to the 
orthoquartzite, graywacke, or arkose families has been indicated (Pettijohn, 1949; 
Krynine, 1948). 

CAMBRIAN (?) SYSTEM 
The Bliss sandstone was originally named and described by Richardson (see 

Wilmarth, 1938, p 212) in the Franklin Mountains,, west Texas. It is separated from the 
underlying Precambrian rocks by an angular unconformity and in the Kingston region is 
approximately conformable under the overlying Ordovician El Paso limestone. 
Richardson (1909, p 3) found that the Bliss sandstone locally was separated from the 
overlying El Paso limestone by an unconformity, but that in most places the sequence was 
conformable. On the basis of its linguloid brachiopods, Richardson considered it to be 
Upper Cambrian in age. However,, P. B. King (1940, pp 152-156) has collected a Lower 
Ordovician (Beekmantown) gastropod fauna from the Bliss sandstone in the Van Horn 
region, Texas. So much doubt was raised concerning the age of the Bliss sandstone that in 
this report the Bliss has been classified as Cambrian (?), although no fossils were found in 
the Kingston area. Kelley (1951) has presented an excellent discussion of the age and 
correlation of the Bliss sandstone. After the first draft of this manuscript was completed, 
R. H. Flower (1953) demonstrated that the lower part of the Bliss sandstone contains an 
Upper Cambrian (middle Franconian) fauna, while the uppermost 35 feet contain trilo-
bites of Lower Ordovician age. Dr. Flower (personal communication) subsequently has 
collected additional fossils indicating the presence of beds of both Upper Cambrian and 
Lower Ordovician ages on each side of the Black Range. It seems likely, therefore, that 
the Bliss sandstone of' the Kingston region also includes beds of these two age groups. 

In the mapped area (see pl 1), the Bliss sandstone crops out in South Percha Creek 
Valley east of the Gray Eagle mine, in Silver Creek west of Kingston, and in Sawpit 
Canyon 1½ miles north of Kingston. Its outcrop area is small, but the rock unit is easily 
recognizable. 

Lithologically the Bliss consists of glauconitic and hematitic sandzstone, siltstone, 
and shale, and to a lesser extent it includes thin lime-stones, pebble conglomerates, and 
orthoquartzite (silica-cemented quartzose sandstone; see Pettijohn, 1949, pp 237-241) 
beds. Pebble- 
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to granule-conglomerate beds are found locally at or near the base. Where the 
conglomerate is absent, the lowest beds are either oolitic hematitic sandstone or glauconitic 
shales and sandstones. The sandstones are rather coarse-grained and contain sparse 
rounded quartz pebbles. Above this were found gray, white, or brown, medium- to coarse 
,grained orthoquartzite beds. White, gray, brown, or violet, hematitic and glauconitic, 
medium- to coarse-grained, locally cross-bedded sandstones overlie these beds. Near the 
top, the formation consists of gray to black limestones, green glauconitic shales and 
sandstones, and thin brown, red, or purple hematitic, or quartzose sandstones. The 
limestones become more abundant toward the top of the formation, and the lithology 
begins to resemble that of the overlying El Paso limestone.  

The upper limit of the Bliss sandstone was chosen arbitrarily as the top of the 
highest sandstone unit underlying the typical El Paso limestone. , The thickness of the 
Bliss formation in the measured sections varies from 85 to 102 feet. It is interesting to 
note that the Bliss sandstone belongs to the orthoquartzite-limestone suite of rocks (Petti-
john, 1949, p 191) and is not a basal arkose. Furthermore, hematitic sandstones occur 
within that part of the Bliss which is probably of Lower Ordovician age. 

ORDOVICIAN SYSTEM  

EL PASO LIMESTONE 

The El Paso limestone of Lower Ordovician age overlies the Bliss sandstone. In the 
Black Range this formation is the lower part of the Paleozoic limestone sequence which 
was named the Mimbres limestone by Gordon and Graton (see Kirk, 1934, p 445). The 
Mimbres limestone also includes the overlying Montoya and Fusselman formations. 
Gordon (Lindgren, Graton, and Gordon, 1910, pp 226-227) used Mimbres lime stone as a 
general term pending more detailed studies, although the Ordovician and Silurian age of 
the sequence was known. The El Paso limestone was originally described by Richardson 
(see Wilmarth, 1938, p 680) and was named for its exposures in the Franklin Mountains, 
Texas. In the area covered by this report, no fossils were found except in Ladrone Gulch, 
where a few slabs showing cross-sections of a gastropodlike fauna were collected, These 
bear a resemblance to the Ophileta fauna (indicating Lower Ordovician age) identified by 
E. O. Ulrich (Richardson, 1909, p 4) in the type area. Wheeler (1942) maintains that in 
the Franklin Mountains the upper part of the El Paso contains a Middle Ordovician fauna. 
Kelley and Silver (1952) have elevated the El Paso to group status in the Caballo 
Mountains and have divided it into two formations. In the Kingston area the correlation is 
based on the lithology and stratigraphic position. 

The thickness of the El Paso limestone in the Kingston area is between 280 and 300 
feet. Over 90 percent of the formation consists of a gray fine-grained limestone in slabby 
to massive beds. The lime-stone weathers gray or bluish gray and contains abundant 
yellow-brown siltstone lenses (2 mm and less thick). On a weathered surface normal 
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Figure 4. SECTION I. ROAD CUT, ONE-EIGHTH MILE EAST OF IRON CREEK 

CAMPGROUND, ON STATE HIGHWAY 180. 
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Figure 5. SECTION IT. COMPOSITE OF 4 SECTIONS IN LADRONE GULCH AND SOUTH 
PERCHA CREEK, SECS. 13, 24, AND 25, T. 16 S., 9 W. (UNSURVEYED). 
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to the bedding, these siltstone lenses protrude a fraction of an inch, and on surfaces 
parallel to the bedding, the lenses have a very irregular anastomosing distribution. 
Sparse, thin, black or brown chert lenses occur in the upper part of the El Paso limestone. 
Many bedding planes show on weathering a reticulating network of yellow-brown 
siliceous worm-shaped masses. Some of the beds are dolomitic. The ratio of limestone to 
dolomite beds is approximately 20 to 1. Sparse gray friable calcareous siltstone and shale 
beds are interbedded with the typical El Paso limestone beds. In the lower portion several 
thin fissile green shale beds are present. The El Paso limestone crops out in the vicinity 
of the Gray Eagle mine, along parts of Sawpit Canyon north of the town of Kingston, and 
in several other localities. Detailed descriptions are found in Section II. 

The two features which lead to prompt recognition of the El Paso can be 
emphasized by the following statement of Darton (1928-a, p 10): "The surface of many 
layers is covered by thin reticulating brown deposits of silica, and most of the rock 
weathers to a pale-gray tint—two features which are distinctive...." Later in the same 
article, Darton (p 184) suggests that these reticulating brown deposits may be due to 
seaweeds. On the basis of the field work, it seems more reasonable to suggest that there 
are three varieties of siliceous deposits, namely: 

1. Thin quartzose siltstone lenses, which may have originated by a winnowing out 
of the finer-grained lime-mud fraction from a thin bottom layer during periods of 
increased turbulence at, or shortly after, the time of deposition. Cyclical repetition of 
such turbulence would produce the tremendous number of siliceous partings. 

2. The worm-shaped masses, in part, may have been an indigestible quartz and 
clay residue left behind in worm tubes. 

3. The chert lenses may be primary deposits of siliceous sponges, secondary 
deposits, or combinations of both. Items 1 and 2 (above) may also owe some of their 
prominence to secondary silicification. 

MONTOYA LIMESTONE 
The Montoya limestone overlies the El Paso formation, from which it is seprated 

by a slight erosional disconformity. As no fossils except sparse crinoid columnals were 
found, correlation is based on lithology. The Montoya was named by Richardson (see 
Wilmarth, 1938, p 1411) from its exposures in the Franklin Mountains, Texas. Its age 
was determined as latest Ordovician (Richmond) by Ulrich (Richardson, 1909) and 
Ulrich and Kirk (Darton, 1928-a, p 13). Kelley and Silver (1952) have recently elevated 
the Montoya to group status and divided it into four formations. 

The base is well marked by a unit which ranges from a loose friable calcareous 
sandstone to a well-cemented orthoquartzite. This unit contains well-rounded coarse 
quartz grains which commonly show some opalescence. In Ladrone Gulch, and in several 
other localities, the basal part of this sandstone contains flattened slabs of boulder and 
cobble size from the underlying El Paso limestone. The maximum measured thickness of 
this sandstone is 31 feet, although lesser thick- 
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nesses are more common and in one locality the sandstone is entirely absent. Above the 
sandstone is a gray to black fine-grained massive dolomitic limestone or dolomite whose 
thickness ranges from 2 to 24 feet. It contains sparse crinoid columnals, sparse small 
black chert lenses, and a few thin beds of a calcareous siltstone. 

Overlying the dolomite is a massively bedded, gray to black fine-grained limestone. 
The maximum thickness for this unit is 47 feet. Locally it contains sparse, small, 
ellipsoidal gray chert nodules. Near the base, it has been considerably fractured and 
brecciated. The brecciated portions have been recemented by a lighter-gray dolomitic 
limestone and, to a very small extent, by white vein calcite. In the lower part of this unit 
are numerous large spheroidal or ellipsoidal cavities and masses (4-12 inches in 
diameter) elongated and layered parallel to the bedding (pl 2). In general the interior of 
the cavities contains remnants of a white material. The spheroidal or ellipsoidal masses, 
which presumably are the equivalent of the material that once filled the cavities 
described above, reveal a concentric structure as follows: 

1. An outer shell of finely laminated black or gray, and white limestone. The 
laminae are concentric. 

2. An intermediate shell of white friable sugary calcite. 
3. A central core of coarsely crystalline white calcite. 

The origin of these spheroidal masses remains a problem. Possible hypotheses of the 
origin might be outlined as follows: 

I. Primary origin 
Formed at time of deposition by conditions similar to those causing formation of 

mud balls. 
II. Secondary origin 

A. Originally the nodules represented a material of greater solubility than the 
surrounding limestone, e.g., a different limestone or phosphatic material, etc. 
This material was dissolved out and subsequently the cavities were filled 
with their present material. 

B. The original nodule material has undergone a replacement which occurred in 
three phases corresponding to each con-centric shell. 

A striking feature of this approximate stratigraphic horizon is a massive chert bed or 
zone 25-35 feet thick. It consists of angular chert pebbles and cobbles in a black, gray, or 
reddish-brown silicified matrix. In some localities it is missing. Near the Gray Eagle mine, 
in the vicinity of the juncture of South Percha Creek and Drummond Gulch, a massive 
chert zone is at a much lower horizon. Here it is found inter-mingled with, and forming a 
large part of, the basal orthoquartzite bed. The fact that massive chert zones occur at 
differing stratigraphic horizons suggests that they are of secondary origin. Furthermore, in 
the vicinity of the Gray Eagle mine ore deposits are found in the El Paso 
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Figure 6. SECTION III. COMPOSITE OF TWO SECTIONS: ROAD CUT (SEC. 19), 

AND IN DRY GULCH (SEC. 18) , T. 16 S., R. 8 W. 
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limestone, not too far from the chert zone described above. Toward Kingston (Section II), 
where ore deposits are found at or near the top of the Montoya (or in the overlying 
Fusselman dolomite), the chert zone is higher. This massive chert zone may represent a 
phase of the mineralization. . 

The top unit of the Montoya formation is a black to gray fine-grained limestone or 
dolomite which weathers gray and is very thin-bedded (5 inches and less for most beds, 
very rarely up to 2 feet in thickness). Nodular limestone in this top unit is interbedded 
with one or two of the following materials, varying from one outcrop to another and 
within the same outcrop: nodular thin gray and/or black chert lenses; gray friable 
calcareous siltstone; or lenses, larger irregular masses, and/or very thin beds of black 
nodular chert. The thickness of this thin-bedded limestone ranges from 70 to 90 feet. 

The Montoya limestone crops out near the Grandview, Gray Eagle, Lady Franklin, 
Iron King, and United States mines. Its maximum measured thickness is 161 feet (see 
Section II). As the Montoya closely resembles the Fusselman dolomite and underlies it 
conformably, it can be separated only approximately. The approximate ratio of limestone 
to dolomite beds in the Montoya limestone is 2:1. 
 

SILURIAN SYSTEM 
The Fusselman dolomite, like the formations previously described, was named by 

Richardson (see Wilmarth, 1938, p 788) from its exposures in Fusselman Canyon, 
Franklin Mountains, Texas. In the Kingston area, as in other localities, it is apparently 
conformable over the Montoya limestone. Very sparse crinoid columnals were the only 
fossils found. However, several other workers (Darton, 1917-a, p 43; 1917-b, p 5; 
Dunham, 1935, pp 43-44; Paige, 1916, p 5; and Richardson, 1909, p 4) in nearby 
localities, while mentioning the rarity of the faunal remains, have succeeded in collecting 
enough material to establish the Niagaran age (Middle Silurian) of this formation. 

The estimated ratio of dolomite to limestone beds is 6:1 in the Fusselman. The 
average thickness of the Fusselman dolomite in all measured sections (Section II) is 85 
feet. Owing to the lithologic similarity and to the small outcrop area of the Fusselman, it 
is represented on the map (pl 1) as combined with the Montoya. In the stratigraphic 
measurements, the contact of the Montoya and Fusselman formations was chosen 
arbitrarily as the top of the thin-bedded nodular limestone or dolomite and the base of the 
overlying massively bedded gray to black dolomite. This conforms closely to previous 
descriptions of the formations by Darton (1928, pp 11-14), Dunham (1935, pp 43-44), 
and Lloyd (1949, pp 52-54). 

Most of the formation consists of a gray, brownish-gray, or black, fine-grained, 
massive dolomite, which weathers a light gray. In the middle part it contains several thin 
black fine-grained limestone beds. Very sparse gray chert nodules and lenses are found in 
the Fusselman. In one locality the dolomite is thin-bedded in the upper part of the 
formation. Most of the known ore deposits in the Kingston area occur as veins and 
replacements in the Fusselman. 
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DEVONIAN SYSTEM 
The Percha shale was first described by Gordon (1907) and named for its 

exposures along Percha Creek in the vicinity of Kingston and Hillsboro, New Mexico. 
The Percha seems to be conformable over the Fusselman. The relations could not be 
determined with certainty because: 

1. The Percha shale is the least competent of all Paleozoic formations in this area, 
and consequently has been deformed the most as a result of faulting, slight folding, and 
igneous intrusion. 

2. The Percha shale offers the least weathering resistance, so that outcrops 
consisting of more than loose slope wash are rare. 

3. The underlying Fusselman, for the most part, is very massive, showing almost 
no structure. 

4. Finally, in many places (west and northwest of Kingston, see pl 1) the top of 
the Fusselman has been extensively mineralized and altered, so that most structures are 
not apparent. 

The Percha shale is about 147 feet thick and may be divided into two members. 
The lower unit has been named the Ready Pay member (Stevenson, 1945, p 241) and 
consists of a black fissile unfossiliferous shale. The upper unit, the Box member, is a 
green to grayish-green calcareous shale which contains black fine-grained limestone 
nodules and lenses, and a few thin limestone beds. The Box member is highly 
fossiliferous and most of the fauna is found in the limy portions. 

The fauna of the Box member of the Percha shale consists chiefly of brachiopoda, 
bryozoa, and crinoid stems and columnals. Stainbrook (1947) and Fritz (1944), 
respectively, have described the brachiopoda and bryozoa of the Percha shale. A few 
brachiopods, collected and tentatively identified by the author, appear to be identical 
with those described by Stainbrook. Until recently this formation was regarded as Upper 
Devonian in age (Stevenson, 1945; Cooper, et al., 1942; and Darton, 1928). However, 
Stainbrook (1947), after studying the Percha fauna and the fauna of other Devonian 
formations in New Mexico, concluded that the entire Percha shale is younger than the 
other Devonian formations in New Mexico and is probably of Mississippian age. Dr. J. 
Marvin Weller has examined briefly the fauna collected by the author and has suggested 
that the brachiopods appear to be a transitional fauna which might represent either 
uppermost Devonian or lowermost Mississippian. Although the Percha is relatively thin 
and lithologically uniform, the possibility that it may contain faunas of two ages, as 
suggested by Stoyanow (1948), cannot be excluded. 

No fossils have been found in the lower or Ready Pay member of the Percha. In 
west Texas and southeastern New Mexico, the Wood-ford black shale is similar 
lithologically to the Ready Pay member and occupies approximately the same 
stratigraphic position (Lloyd, 1949, pp 48-49). The Woodford black shale is Upper 
Devonian, according to Ellison (1946), on the basis of conodonts and fossil wood. 

The Percha shale crops out in the vicinity of most of the mines. 
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Excellent exposures may be seen along State Highway 180, several miles west of 
Kingston. The overlying unit is the Mississippian Lake Valley limestone which is 
separated by a disconformity from the Percha shale. 

MISSISSIPPIAN SYSTEM 
The Lake Valley limestone was first named by Cope (see Wilmarth, 1938, p 1138). 

It is separated from the Percha shale by a disconformity. In the Kingston area, the 
thickness of the Lake Valley formation is approximately 140 feet. 

The base is a gray coarsely crystalline limestone, largely composed of crinoid-
columnal fragments, in lenticular beds 18 inches and less thick. This lenticular unit has a 
maximum thickness of 8 feet. It is possible that this basal unit may be all that is present of 
the Andrecito member (Laudon and Bowsher, 1949). 

Overlying the basal limestone is a black fine-grained limestone, massively bedded, 
the upper part of which contains abundant black and gray nodular chert lenses. Many of 
the chert lenses have the black and gray color arranged in alternating lieseganglike bands. 
This unit, which is approximately 23 feet thick, with respect to lithology and strati-
graphic position is probably the equivalent of the Alamogordo member described by 
Laudon and Bowsher. These two lower units form a massive and prominent scarp in most 
of their outcrops. 

The middle unit, approximately 36 feet thick, consists of a black slabby shaly fine-
grained limestone which weathers a bluish green or yellowish green. It is highly 
fossiliferous and all the fossils were collected from this horizon. Thin limestone beds are 
interbedded with the shaly limestone. The uppermost unit is a gray coarse-grained 
crystalline limestone which contains abundant gray-white nodular chert lenses, I foot and 
less in thickness. The beds of this 75-foot unit range from massive to thin. The Nunn and 
Tierra Blanca members, as defined by Laudon and Bowsher, probably correspond to the 
middle and upper-most units, respectively. 

West of the crest of the Black Range, near the Iron Creek camp-ground (Section I), 
a measured section of the Lake Valley limestone is considerably thicker. However, three 
igneous dikes cut across the sediments and might represent zones of displacement, so that 
the apparent increase in thickness may be due to faulting. In this vicinity (Section I) the 
stratigraphic section contains the crest of a gentle anti-cline plunging northward. Near the 
crest of the anticline the limestone is very coarse-grained in part and slightly mineralized, 
although still showing most of the primary features of the Lake Valley limestone. Many 
of the chert nodules and lenses are enclosed by a thin rim of fibrous wollastonite. Garnet 
and a mineral whose optical properties 

Figure 7. SECTION IV. COMPOSITE OF SECTIONS: ALONG LADRONE GULCH 
(SEC. 13) , ROAD CUT AND HILL SLOPE (NE¼ SEC. 24) . T. 16 S., R. 9 W. 

(UNSURVEYED) . 
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correspond to an end member of the chlorite group commonly called "serpentine" 
(Winchell, 1945, pp 276-279), were found in some of the fractures and in the limestone 
itself. Several silicified chertlike beds still contain fenestellid bryozoan remains. 

The fauna, collected by the author from the middle unit of the Lake Valley 
limestone, is of Mississippian age and consists chiefly of brachiopods, crinoid fragments, 
and a few trilobite pygidia and spines. On the basis of this collection, Dr. Weller has 
suggested that the age of the Lake Valley limestone lies somewhere in the range 
Kinderhook to Osage. This corresponds to Laudon and Bowsher's (1949) conclusion. 

The Lake Valley limestone, which is separated from the overlying Pennsylvanian 
Magdalena formation by a disconformity, crops out in Ladrone Gulch and near the Lady 
Franklin mine, northwest of Kingston, also along South Percha Creek, and in large inliers 
southwest of Emory Pass. 

PENNSYLVANIAN SYSTEM 

The Magdalena was first proposed as a group name by Gordon (1907-b), who 
named it for its development in the Magdalena Mountains, New Mexico, where it has 
been divided into two formations. In the Kingston area, however, the lithologic 
uniformity of this formation precludes any subdivision except on a faunal basis. For the 
purpose of description, the Magdalena has been arbitrarily divided into units with very 
similar characteristics. Since the lithology at any stratigraphic horizon varies 
considerably, these units must be regarded as integrations of a generalized nature. For the 
exact details the reader is referred to Sections I, III, and IV. 

The basal unit consists primarily of shale and shaly limestone. The shale, which 
generally weathers brown, may be gray, yellow, brown, green, or black, and is blocky, 
slabby, or fissile. The shaly limestone is gray to black, thin-bedded and nodular, with 
some gray or black chert lenses. Some limestone beds contain abundant small fusulinids. 
In Section I and in several other localities, this unit also contains a gray fine-grained well-
cemented blocky orthoquartzite bed. The average thickness of the basal unit is 
approximately 50 feet. 

The distinguishing feature of the next youngest unit, approximately 55 feet thick, is 
the massiveness of most of the limestone beds. The limestone is gray to black, and 
contains nodular black and light-gray chert lenses, numerous fossils (especially 
fusulinids), and, in Section I, lenticular zones with abundant crinoid columnals. Some 
weathered surfaces are covered with a yellowish-brown siltstonelike material. Locally it 
ranges to a thin-bedded slabby nodular shaly limestone. Interbeds of gray, greenish-black, 
and black shale are common.   

The succeeding unit is about 200 feet thick and consists of massive- to thin-bedded 
limestone, containing nodular black and gray chert lenses. The chief unifying 
characteristic is that the beds are about equally divided between massive limestones, and 
silty limestones, siltstones, and shales. The shale is gray, green, or black, and fissile or 
almost so. The silty limestone appears identical to the massive 
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limestone on a fresh surface. However, in weathering it produces a yellowish-brown, very 
fine-grained, porous-looking surface, and breaks into angular blocks. The he silty 
limestone encloses gray lenses and large brachiopod-shaped masses that on weathering 
form slight depressions below the surface of the silty limestone. The differential 
weathering suggests that the irregular gray limestone lenses and patches are considerably 
lower in noncarbonate elastic content than the anastomosing yellowish-brown silty 
limestone portions. Several thin gray siltstone or sandstone beds occur at the base of this 
horizon in one locality (Section I). Near the top of this unit, in one place (Section III), 
there is a chert (or silicified) bed. Fossils are common and consist chiefly of fusulinids and 
brachiopods. 

A grayish-green fissile shale bed, about 10 feet thick, is the next unit. It is 
generally poorly exposed or concealed. The unit overlying the shale is very similar to 
that which underlies the shale. Its thickness is approximately 80 feet. 

The next youngest unit, 120 feet thick, is a gray thin-bedded nodular shaly 
limestone. It is highly fossiliferous and weathers a yellowish-brown, possibly owing to a 
high noncarbonate clastic content. It is interbedded with thicker beds of a gray to black, 
fine-grained limestone. A striking feature of this unit is the presence of lenticular 
limestone pebble-conglomerate lenses, 5 feet and less thick. These conglomerates are 
gray and have a matrix consisting of coarse-grained fragmental carbonate detritus and 
fine black carbonate. The pebbles are well rounded and consist of limestone and fossil 
fragments. Many pebbles are enveloped by a thin fine-grained black concentric layer, 
which may have formed in a manner similar to that of mud balls. 

Above is a massive gray fine-grained silty limestone unit, 12 feet thick. On a 
weathered surface it has a yellow-brown color with slight gray depressions, as described 
above. This unit is overlain by a yellow, slabby to fissile, shale containing sparse 
limestone nodules which are highly fossiliferous. This shale is approximately 60 feet 
thick; the exposures, however, are poor. 

The uppermost unit in the measured stratigraphic sections (Sec-don III) is 15 feet 
of gray fine-grained shaly limestone which weathers to a yellowish brown. Above the 
measured sections there remains an estimated 50-75 feet of a slabby nodular shaly 
limestone which is concealed in most localities. The total thickness of the Magdalena in 
this area is at least 650 feet. 

The fossils found in the Magdalena consist mainly of foraminifera and 
brachiopods. Dr. Weller has examined the brachiopod fauna collected by the author and 
has suggested that their probable range is from middle Pennsylvanian to Permian. 
However, it is recognized that brachiopods alone are very unsuitable for determining a 
precise age in the Pennsylvanian (Weller, 1947, p 258). Needham (1937, pp. 13-15) has 
collected fusulinids from near Kingston, New Mexico, and has correlated the lower part 
of the Magdalena with parts of the Des Moines series of the midcontinent region. 

As the term Magdalena is practically synonymous with Pennsylvanian in New 
Mexico (Thompson, 1942, p 22), various authors 
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(Thompson, 1942; Kelley and Silver, 1952; see also Read and Wood, 1947) have divided 

it into smaller formational units. At the present time, however, separation of the 
Magdalena group into formations in the Kingston area would be unwarranted. 

The Magdalena limestone is found in extremely dissected north-south cuestas just 
west of the town of Kingston. It' is well exposed in road cuts at 3 points along State 
Highway 180—approximately 2 miles west of Kingston, north of the Gray Eagle mine, 
several hundred yards east of the Iron Creek campground—and in numerous other 
localities. In the Kingston area it is overlain conformably by the red beds of the Abo 
formation. 

PERMIAN SYSTEM 
The Abo formation was first named by W. T. Lee (see Wilmarth, 1938, p 9) for its 

exposures in Abo Canyon at the southern end of the Manzano Mountains, New Mexico. 
In the' Kingston area it is at least 70 percent red shale and at the most 30 percent red 

siltstone, sandstone, and arkosic conglomerate with very minor thin limestone beds. For 
the most part the shale is massive and nonresistant, so that its outcrops are poor. Locally 
the shales and siltstones have a greenish color unevenly distributed throughout the layers, 
which may be the result of a secondary reduction of the ferric oxides. Several thin nodular 
shaly limestone and calcareous shale beds are present; these generally have a green color, 
or greenish tinge. 

Numerous thin conglomerate beds occur throughout the Abo formation. These 
consist of angular to round pebbles, granules, and coarse sand of gray limestone, red shale, 
and reddish-gray chert cemented by white calcite or a greenish-gray fine-grained 
limestone. Approximately 1¼  miles east of the mapped area and north of State Highway 
180, these conglomerates cap a series of small cuestas within the easily eroded Abo 
formation. Several thin intraformational conglomerate beds in the Abo can be easily 
distinguished by their fissile red shale matrix. The pebbles in the intraformational 
conglomerates consist of gray limestone, red sandstone, and red shale. 

The top beds in many localities are considerably different from the underlying 
portions. At the top, or within 60 feet of the Abo-early andesite contact, is a massive red 
shale which is similar to the lower parts of the formation. Locally, however, the red shale 
is overlain by 20 feet of buff to brown, massive, crossbedded orthoquartzite. In Section V 
at this horizon, a green massive- to thin-bedded siltstone, 36 feet thick, is interbedded with 
thin shale units. Overlying this is 10 to 25 feet of interbedded black fissile shale and a 
black and gray shaly limestone. Again at Section V, this black shale horizon seems to be 
represented by 4 feet of a red and green fissile shale interbedded with a gray nodular 
limestone. Above this horizon is a white, gray or pink, massive, crossbedded, medium- to 
coarse-grained orthoquartzite. Coarse 

Figure 8. SECTION V. COMPOSITE OF TWO SECTIONS: ROAD CUTS ON STATE 
HIGHWAY 180, IN SECS. 16 AND 22, T. 16 S., R. 9 W. (UNSURVEYED). 
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or fine sand lenses, and conglomerate lenses, 3 inches or less in thickness, of rounded 
chert and quartz pebbles, are common in the orthoquartzite, which may be friable or well 
cemented. Near Kingston the orthoquartzite contains some gray, yellow, and purple 
shaly interbeds. At Section V this sandstone has red and gray shale partings between the 
massive beds. The thickness of the unit ranges from 15 to 30 feet. These top beds are 
best exposed in the draws north of State Highway 180, between a quarter and a half mile 
west of Wright's Cabin campground. 

The estimated thickness of the Abo formation is 700 feet. As the red beds are the 
least resistant of any of the Paleozoic formations, they are poorly exposed and are found 
mostly in depressions. Their areal extent, however, can be easily determined because of 
the intense red coloring they impart to the mantle rock. Although in Section V more than 
50 percent of the formation is concealed by slope wash, it is still the best exposed 
section. The Abo formation crops out in and around the town of Kingston, 2½ miles 
west of Kingston, also just west of the crest of the range, and in several other localities. 
The Abo is separated from the overlying Tertiary andesite by a very marked erosional 
unconformity. Where the andesite overlies the Abo red beds, the layering of both 
formations is approximately parallel. In many localities, however, the Abo formation has 
been completely removed, so that the Tertiary andesite rests directly on the Magdalena 
limestone. 

In the Kingston area, no fossils were found in the Abo formation. Its coloring is so 
intensely red, however, that the correlation is considered more certain than the average 
correlation based on lithology. The Permian age of the Abo formation is well established 
(see King, P. B., 1942, p 690; Miller and Parizek, 1948; Langston, 1949). Southward, 
according to Needham and Bates (1943, p 1657), the Hueco limestone is the equivalent 
of the Abo formation. Darton (1926) has correlated the Abo formation with part of the 
Supai formation of the Grand Canyon region of Arizona. 

Until recently the entire Abo has been considered as basal Permian (Wolfcamp 
series). Owing to its lithologic character, and the plant and vertebrate fossils which it 
contains, the Abo is considered to be terrestrial in origin. P. B. King (1942, pp 675-677, 
687-690) has presented evidence which, he believes, suggests that the Abo is primarily of 
Leonard age (lower Permian, but overlying the Wolfcamp series). The evidence for this is 
that the marine fossils establishing Wolf-camp age are supposed to have come from 
transitional beds (i.e., interbedded limestone, red and gray shale, and arkosic 
conglomerates) which actually underlie the Abo and which have been mapped as part of 
the underlying Magdalena group. King (1942, pp 687-69.0) also reports that fossil plants 
from the upper Abo beds studied by C. B. Read constitute a Supai floral assemblage, 
which is supposedly of Leonard age. Inasmuch as the Abo formation is a lithologic unit 
and contains very few marine fossils, exact time-stratigraphic correlation with either the 
marine Leonard or the marine Wolfcamp series would seem impossible. Skinner (1946, p 
1871) and Lloyd (1949, pp 30-31) have conjectured that the Abo formation actually 
crosses the time boundary represented by the Leonard-Wolfcamp contact. Thompson's 
cross-section (1942, pl 
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II), and Miller and Parizek's (1948) faunal age determinations suggest that most of the 
Abo formation in New Mexico is of late Wolfcamp age. 

The 60 feet (approximately) of sandstone and limestone described on pp 24, 26, 
which occur at the top of the Abo red beds in several localities of the Kingston area, are 
inconsistent with the uniform lithology of the Abo formation as a whole. However, the 
base of the Permian Yeso formation, which overlies the Abo red beds in many parts of 
New Mexico, as described by Needham and Bates (1943, pp 1658-1661), is very similar 
to the shaly limestone and massive orthoquartzite beds found within the upper 60 feet of 
the Abo formation, as mapped in the Kingston region. It is possible that these upper beds 
may represent erosional remnants of the Yeso formation, which suggests that 
sedimentation, as in adjacent regions, continued after formation of the Abo red beds. 

SUMMARY OF THE PALEOZOIC STRATA 
An integrated picture of the Paleozoic rocks in the Kingston area can be attained by 

tabulating the stratigraphy in various age groups, as in Table 2. The regional relationship 
is obviously derived from a study of the geologic literature of New Mexico and omits 
many details which can be found in the references cited. Cambrian through Mississippian 
rocks are not found north of the 34th parallel in New Mexico,' whereas near the southern 
border of New Mexico these rocks attain great thicknesses. From this it appears likely that 
north of the Kingston area there existed a stable land mass and that to the south there was 
a deep, or rapidly subsiding, depositional basin (Sonora trough, Schuchert, 1930, fig 1). 
The presence and character of the Pennsylvanian and Permian rocks throughout the state 
have led to the conclusion that, during the periods when these rocks were deposited, 
orogenesis was taking place in north central New Mexico (Melton, 1925; and others), 
marine waters advanced over most of the state, and finally retreated from most of New 
Mexico. 

Compositional differences (table 2) between the upper and lower Paleozoic rocks 
are qualitative estimates based on the field occurrence and to a lesser extent on 
microscopic determinations. The major constituents of the pre-Devonian rocks are 
limestone, dolomite, and sand-stone. Devonian and later Paleozoic rocks, on the other 
hand, consist primarily of limestone and shale. The presence or absence of dolomite, and 
the abundance of shale, are the most pronounced differences between these two groups. 

Under sedimentary facies (table 2), supposedly the orthoquartzite-limestone suite 
represents marine deposition in a relatively shallow sea, which has covered a low and 
stable part of the earth's crust (Pettijohn, 1949).. The arkose suite is considered to be 
formed by terrestrial deposition in one area while mountain building in an adjacent area is 
in its later stages (ibid). Although the Permian red beds in the Kings- 

1. Recently Read and Wood (1947, pp 229, 231-32, 235) have suggested that some thin strata 
in northern New Mexico formerly mapped as Pennsylvanian may actually be Mississippian, or 
even Devonian. 
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ton area may not be true arkoses, most geologists would agree that they are probably 
terrestrial deposits, and that for this reason they fit best in the arkose suite. 

Finally, the Paleozoic sediments may be grouped (table 2) according to their 
behavior with respect to the igneous intrusions in the mapped area. Cambrian through 
Silurian rocks (mostly carbonates and sand-stone) were apparently much more rigid and 
impermeable with regard to the igneous intrusion than the overlying Devonian through 
Permian rocks (mostly limestone and shale). The mechanical behavior of the Paleozoic 
sediments is presented in detail in the sections on the major structural features and the 
quartz monzonite porphyry. 

TABLE 2. CLASSIFICATION OF THE PALEOZOIC 
STRATA IN THE KINGSTON AREA 

CLASSIFICATORY CHRONOLOGIC GROUP 
CRITERION 

REMARKS 

Cambrian to Mississippian Stable positive area to north and 
Sonora trough to south 

Regional 
relationship 

Pennsylvanian to Permian 

Orogeny to north, maximum 
marine inundation, followed by 
regression of sea 

Cambrian to Silurian Limestone, dolomite, sandstone, 
some shale 

Composition 
Devonian to Permian 

Limestone, shale, sandstone, no 
dolomite 

Cambrian to Pennsylvanian Orthoquartzite-limestone suite 
Sedimentary facies            Permian Arkose suite 

Mechanical behavior        Cambrian to Silurian More rigid and resistant 
with respect to igne- 
ous intrusives Devonian to Permian

Less rigid and resistant  

 



Tertiary Sequence 
INTRODUCTION 

General chronology. The sequence of rock units younger than the Paleozoic 
sediments is, in order of decreasing age: 

1. Fanglomerate deposit. This is found only in one locality. 
2. Andesite, latite, and their corresponding quartzose counterparts occurring as 

flows, tuffs, and agglomerates. 
3. Quartz monzonite porphyry intrusives. 
4. Extrusive tuffaceous rhyolite, intrusive rhyolite porphyry, rhyolite dikes, and 

rhyolite vitrophyre dikes and irregularly shaped masses. 
5. Arkosic sandstone, conglomerate, and tuff beds. 
6. Late andesite flows and agglomerates. 
7. Early gravel deposits. This unit is partly contemporaneous with the late andesite 

of item 6 (above). 
The ages of these rock units can only be estimated by comparison with nearby 

regions and with respect to the regional picture which has been formed concerning the 
Tertiary history of the western part of the United States. Volcanic rocks of possible 
Cretaceous age have been de-scribed (Paige, 1916, p 7) in the nearby Silver City region. 
According to many studies their distribution is limited and they have been altered 
considerably in contrast to the more widespread and more unaltered volcanic rocks listed 
above. In the Rocky Mountain region of the United States, according to Callaghan (1951), 
the volcanic rocks may be divided into three series, of which the first two are Tertiary, but 
older than latest Miocene, and the third ranges in age from Pliocene to post-Wisconsin. 
The rock units of items 2, 4, and 6 (above) may correspond, respectively, to these three 
series. In the NE¼, sec. 13, T. 16 S., R. 8 W., approximately 5 miles east of the mapped 
area on State Highway 180, there are Tertiary lake beds with a conifer flora. This flora has 
been identified (Brown, R. W., personal communication) as between early Miocene and 
early Pliocene in age. Reconnaissance studies of the lake beds and the volcanic rock 
which overlies the lake beds suggest that, in terms of stratigraphic position, the arkosic 
sand-stone, conglomerate, and tuff listed above (item 5) are of approximately the same 
age. In addition, Knechtel (1936) has reported the Pliocene age of the Gila conglomerate 
in southeastern Arizona, with which these early gravels might tentatively be correlated, 
with respect again to their stratigraphic position and distribution. These age assignments, 
al-though inconclusive, seem reasonable in view of the present-day data. 

The post-Permian pre-Tertiary land surface. Some generalized conclusions 
concerning the land surface may be drawn on the basis of the following evidence: 

1. Post-Abo Permian sediments have been found in many localities in Sierra 
County, New Mexico (Harley, 1934, pl 2). 

2. Cretaceous sediments have also been reported (Harley, 1934, 



30 NEW MEXICO BUREAU OF MINES Sc MINERAL RESOURCES 
 
pl 2; Spencer and Paige, 1935, pp 28-31) in regions surrounding the mapped area. 

3. In the mapped area the earliest Tertiary rocks overlie either the Pennsylvanian 
Magdalena limestone or the Permian Abo formation, but no older formation. 

4. The angle between the planar structures of the earliest Tertiary rocks and the 
nearest underlying Paleozoic sediment varies from 4 to 65 degrees. South of Kingston and 
northeast of Iron Creek, the structure in both rocks is nearly parallel. 

5. In a road cut, half a mile south of Emory Pass, a boulder deposit occurs 
between Paleozoic red beds and the oldest Tertiary volcanic rocks. This deposit contains 
both red shale and sandstone fragments of the Abo formation and altered fragments of 
some volcanic rock. The boulders and cobbles are subrounded, slightly brecciated, 
hematite-stained, and show some slickensided surfaces. The matrix consists of coarse 
sand and small shale fragments. There are two reasons for interpreting this deposit as a 
local fanglomerate, along which postdepositionally some movement or beddingplane 
faulting occurred, rather than as a fault breccia: (a) the high degree of roundness of some 
of the larger fragments, and (b) the boulders do not appear to be derived from the 
volcanic rocks in the immediate vicinity. 

Items 1, 2, and 3 (above) suggest that the pre-Tertiary rocks of this area had been 
considerably eroded. Items 3 and 4 imply that there was some tilting, folding, and/or 
faulting in pre-Tertiary time. The fanglomerate described under item 5, may not be pre-
Tertiary, because the volcanic rock boulders which it contains are of unknown age. Since, 
however, the fanglomerate is found at the base of the volcanic sequence, it is likely that 
near the beginning of the recorded Tertiary events the regional relief was considerable. 
The general parallelism (item 4 above) of the pre- and post-Tertiary planar structures in 
large areas implies that the deformational effects may have been localized as a result of 
tilting and block faulting. 

ANDESITE, LATITE, AND THEIR QUARTZOSE EQUIVALENTS 
These rocks occur as flows, tuffs, and agglomerates, and form the earliest 

volcanic series. In this report this unit has been called the early andesite sequence. The 
early andesite volcanic sequence crops out chiefly along the central part of the Black 
Range, and to a smaller extent in the vicinity of Kingston, east of the crest of the Range. 
In the western part of the area mapped, it does not appear at the surface. 
The unconformable relationship between this volcanic sequence and the underlying 
Paleozoic strata has previously been described. Estimated thicknesses of the early 
andesite in various localities range from 250 to 1,700 feet. Just north of Kingston it is 
very thin or missing between the younger tuffaceous rhyolite and the Permian Abo 
formation.  This suggests a stratigraphic break between the early andesite and 
the tuffaceous rhyolite. Their planar structure and bedding are 
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Figure 9 

INTERBEDDED FLOWS AND TUFFS OF THE EARLY ANDESITE IN ROAD CUT ONE-HALF 
MILE WEST OF EMORY PASS. HEIGHT OF OUTCROP IS ABOUT 12 FEET. 

nearly parallel in some places; in other areas they exhibit a marked unconformity. 
The lower part of the early andesite volcanic sequence consists of well-bedded 

flows, tuffs, and agglomerates (see fig 9). The flows are a dense bluish black with sparse 
colorless to white feldspar phenocrysts about 2 mm long. The thickness of the individual 
flows in the lower part of this unit is in most outcrops 6 feet or less. The terminology used 
in describing the tuffs and agglomerates, with some modification, is that defined by 
Wentworth and Williams (1932). Volcanic breccias consist predominantly of sharp 
angular fragments, whereas the agglomerates contain more highly rounded fragments, 
though showing no features of water-laid sediments. Interbedded with the flow units are 
thin beds of a red-violet, fine to coarse, essential or accessory tuff, and thick beds of light-
green, gray, or purple lapilli tuff or agglomerate. The fragments in the pyroclastic beds 
are aphanitic porphyries with very abundant small (1 mm and less) subhedral white 
phenocrysts, that have been considerably altered. Less abundant, but identical, 
phenocrysts are also found in the matrix of the pyroclastic rocks. 

Above this is a great thickness of massive flows and flow breccias. These rocks are 
aphanitic, red violet, purple, gray, green, or various combinations of these colors, and 
contain abundant white subhedral 
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phenocrysts which may be as large as 1 cm, although most are 2 mm and less. Locally, 
small hornblende laths which may show an alignment are abundant. Faint color bands 
and a slabby weathering, present in many outcrops, probably represent a flow banding. 

The upper part of this volcanic sequence consists of massive beds of volcanic 
breccia and agglomerate, and thin to thick beds of essential and accessory tuffs. The grain 
size extends over the entire tuff range. These beds are red, purple, gray, green, white, 
black, or mixtures of these colors. The finer-grained black or purple tuff may weather into 
flattened pieces parallel to the bedding with rounded corners, such that the weathered 
surface resembles that of a cobblestone street. The phenocrysts of the larger fragments 
and the matrix are identical to those found in the pyroclastic rocks in the lower part of the 
early andesite sequence. 

The field criteria which distinguish this volcanic sequence from the overlying 
tuffaceous rhyolite are: 

1. Absence of visible quartz phenocrysts. 
2. Presence of altered feldspars, i.e., white phenocrysts with a clayey luster and no 

shiny cleavage on a fractured surface. 
3. A darker color, in general. 
4. Never more than one feldspar megascopically. In many places white and pink 

feldspars can be seen in the overlying unit. 
5. Locally abundant hornblende laths. 
6. Absence of megascopic biotite. 

There are exceptions to any single criterion. The combination of them leaves little 
doubt, however, as to the proper identification. Three-fourths of a mile south-southwest 
of the town of Kingston, enclosed by a bend in State Highway 180, this volcanic unit 
forms a small synclinal structure. Here some of the flows contain a considerable amount 
of very small quartz phenocrysts. This is the only known locality in which the first 
criterion listed above is not applicable. 

Microscopically, the texture of the flows is holocrystalline, seriate porphyritic, and 
felty or trachytic. It contains corroded euhedral phenocrysts and a cryptocrystalline to 
aphanitic matrix. The analysis, norm, and mode of a quartz latite specimen from a flow in 
the lower part of this volcanic unit are given in Table 6 (see 389-A-236). The normative 
calcite and corundum in this specimen suggest that the original rock was dacitic. For the 
massive flows comprising the middle part of this volcanic sequence, the average mode of 
the primary components is (in percentages): andesine, 26.5; hornblende, 8.0; magnetite 
and ilmenite, 3.0; biotite, 2.0; matrix, 58.5; and small amounts of quartz and apatite. On 
the basis of the phenocrysts, these massive flows are andesites. How-ever, the 
composition of the matrix is largely unknown, and in several thinsections the amount of 
fine-grained quartz in the matrix appears to be considerable; the deviations from this 
mode may, therefore, be large. The petrographic description which follows deals 
primarily with the massive flows forming the middle part of this volcanic sequence. 

The plagioclase occurs as resorbed and corroded phenocrysts, 5 mm 
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and less in size, and as fine microlitic laths. The composition of the plagioclase, 
determined by its extinction angles, is approximately An37. Normal and oscillatory zoning 
are present. Common features of the larger andesine phenocrysts are myrmekitelike 
inclusions which are found throughout the grain, as a central core, or in a concentric zone 
about the central part. The material of the inclusions appears similar to the groundmass. 
Commonly, plagioclase develops thin clear outer rims which may display euhedral 
terminations. These phenocrysts commonly are clumped together and partly enclose one 
another. 

The hornblende occurs as lath-shaped prisms with a pseudohexagonal cross-
section. Its pleochroism is pale yellow, yellowish green, and green, from alpha to gamma, 
respectively. Its optic angle (2Vα) is approximately 85 degrees and r <v. Each hornblende 
grain is enclosed by a thin opaque hematite rim. Some of the hornblende has been 
partially resorbed and corroded. 

.Biotite is pleochroic from dark brown to tan. It is rimmed with, and partially 
altered to, hematite. Locally the hornblende has been replaced by biotite. Most of the 
apatite needles are found within the biotite. 

The matrix is cryptocrystalline to very fine-grained. Plagioclase microlites form the 
most easily recognized constituents. Numerous small anhedral magnetite and ilmenite 
grains are found in the groundmass. Very fine-grained quartz, which in several sections 
may be present in amount sufficient to change the rock name from andesite to dacite, 
occurs in the matrix. Some of the cavities in the matrix have been filled in concentric 
zones by quartz, opal, and several zeolites. 

The common alteration and replacement minerals found in the flows are calcite, 
sericite, hematite, limonite, and leucoxene, in order of decreasing abundance. Locally the 
alteration is so intense that no primary minerals can be identified. This is especially true 
in the massive flows and flow breccias comprising the middle part of the early andesite 
sequence. 

The microscopic texture of the tuff beds in the early andesite sequence is very 
similar to that of a graywacke. The tuff consists of a glassy to cryptocrystalline or fine-
grained matrix, which may be clouded or even opaque. In some parts, however, eutaxitic 
banding, a felty texture, or both may be predominant in the matrix. The phenocrysts are 
seriate, locally broken, euhedral to subhedral, resorbed and corroded, and are composed 
chiefly of lath-shaped plagioclase. The rock fragments vary in size from fine-grained 
upward, are round to subround, and have the same texture and composition as the matrix, 
which shows flow textures. 

Analyses, norms, and modes, which are probably typical of the pyroclastic rocks of 
this earliest volcanic sequence, are presented under NL2 and L2 in Table 6. On the basis 
of their chemical composition, some of these tuffs are classified as quartz latites. 

Most of the phenocrysts in the quartz lathe tuffs are plagioclase, with optical 
properties corresponding to compositions ranging from An35 to An50. The plagioclase is 
subhedral, twinned, zoned, fractured, broken, tabular, and slightly embayed and corroded 
by the groundmass. Many crystals enclose myrmekitelike masses, as described above. 
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In the tuff modes presented in Table 6, potash feldspar has not been counted 
separately from the plagioclase (An35-An50). The matrix and some of the phenocrysts are 
clouded intensely with fine hematitic dust; moreover, the phenocrysts in general are 
separated from one another by groundmass, so that in any counting process it is not 
possible to subdivide the feldspar without determining the optical properties of every 
untwinned feldspar phenocryst. Several U-stage determinations suggest that a small 
amount of potash feldspar has been included in the modal plagioclase. 

Quartz forms small angular grains, 1 mm and less in size. Some of the grains show 
a slight rounding, possibly owing to resorption. Magnetite (and possibly ilmenite) is 
present as small euhedral to anhedral grains. A colorless pyroxene, which has been almost 
completely altered and replaced, is identified as pigeonite on the basis of the optic angle 
(2Vγ), which is less than 40 degrees, and the extinction (γ^c), which ranges from 21 to 35 
degrees. 

The matrix comprises at least 50 percent of the rock. It is consider-ably clouded, 
almost opaque where hematite (and leucoxene?) abounds. The matrix commonly contains 
a few small fragments of glass or devitrified glass. 

Numerous secondary alteration minerals, as shown in Table 6, are calcite, sericite, 
chlorite, hematite and leucoxene, epidote, and one or more minerals which have been 
called zeolites. Finely divided hematite and leucoxene render thinsections opaque. Calcite 
forms small, irregular sutured grains within plagioclase and pyroxene, around irregular 
plagioclase and pyroxene remnants, and in the groundmass. Large phenocrysts, consisting 
only of calcite and sericite, are interpreted as complete replacements of the above-
mentioned phenocrysts. Minute sericite shreds are also prominent in the feldspar, around 
and within the pyroxene, and in the matrix. Locally the chlorite attains prominence as a 
part of the matrix, associated with the pyroxene, and to a small extent on the perimeter 
and along the cleavage of the feldspar grains. In one specimen, some shard-shaped masses 
have a peripheral zone of anhedral quartz with a center of radially fibrous chlorite. Epi-
dote occurs as sparse anhedral grains associated with calcite and chlorite in the 
replacement of plagioclase and pyroxene. In several thinsections the feldspar has been 
replaced by very fine-grained irregular masses which may be one or more zeolites. Their 
properties are: 

1. Some parts have an undulatory or radial extinction. 
2. Maximum birefringence of about .010. 
3. Uniaxial negative or biaxial with a small 2V. 
4. Some grains show two cleavages at approximately 88 degrees, and symmetrical 

extinction. 
5. The indices relative to calcite and plagioclase are such that n> 1.486, N <1.548. 

Grains immersed in oil show indices between 1.515 and 1.530. 
Since the properties do not fit any of the common zeolites, it is possible that more 

than one mineral may be present. The silicic nature 
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of these rocks suggests that this mineral may not be, in fact, a zeolite. Item (1) above, and 
the symmetrical extinction, would seem to preclude the presence of a high-temperature 
feldspar. At any rate, because of its properties, small size, and amount, a tentative 
classification as "zeolites" has been deemed sufficient. 

Compositional differences between the feldspar phenocrysts and the normative 
feldspar make it likely that equilibrium conditions were not attained during 
crystallization. Corrosion and resorption of the phenocrysts suggest that crystallization 
began intratellurically. The myrmekitelike inclusions in the feldspar phenocrysts are 
almost diagnostic of the earliest volcanic sequence. The intensive secondary alteration 
and replacement is a diagnostic feature, inasmuch as it occurs in no younger volcanic rock 
in the area. 

QUARTZ MONZONITE PORPHYRY 

In the mapped area (pl 1), quartz monzonite porphyry is found east of the longitude 
of the Grandview mine. The name quartz monzonite is used in spite of the fine-grained 
nature of this rock unit, in order to differentiate it clearly from the comparable extrusive 
rocks of this region. 

The quartz monzonite porphyry truncates the early andesite and all older rocks, and 
is, in turn, cut by younger rhyolite dikes. That some parts of the early andesite volcanic 
sequence may be the extrusive equivalent of the quartz monzonite is suggested by the fact 
that hand specimens are similar, the early andesite sequence was the youngest rock unit at 
the time the quartz monzonite was intruded, and locally the lower part of the andesite 
sequence has been intruded by the quartz monzonite. 

Approximately 1½ miles east of the mapped area, in the NE¼ sec. 16, T. 16 S., R. 8 
W., the quartz monzonite porphyry transects a fault with small displacement in the 
Mississippian and Devonian sediments. Many of the fault zones in the Kingston area now 
contain quartz monzonite dikes. Therefore, it seems probable that much of the faulting in 
this area occurred before or during the quartz monzonite intrusion. 

From an inspection of the areal distribution (see pl 1) of the quartz monzonite 
masses, it may be inferred that several factors have controlled the loci of igneous 
emplacement. The quartz monzonite may have vertical or nearly vertical contacts, and 
may truncate the bedding of the enclosing sediments. Such dikes are most numerous near 
the Gray Eagle mine and along Middle Percha Creek (see pl 1). In addition, some of these 
dikes are found in the fault zones (east of Kingston, pl 1). 

West and south of Kingston, along Drummond Gulch, Southwest Canyon, and 
Middle and South Percha Creeks, larger masses of quartz monzonite have either vertical 
or horizontal contacts with the Paleozoic sediments and, in addition, enclose 
planigraphically some large masses of the sediments. In Drummond Gulch several large 
planigraphically enclosed masses of the Lake Valley limestone have their bedding ap-
proximately parallel to each other. 

The Paleozoic sediments consist primarily of massive carbonate 
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rocks, of which the upper units, Devonian through Pennsylvanian sediments, are 
characterized by large amounts of shale. The Devonian Percha shale and the thin shale 
unit at the base of the Pennsylvanian Magdalena limestone are the most prominent shale 
horizons. At the above localities (see pl I), the quartz monzonite porphyry overlies or 
underlies stratigraphically the Mississippian Lake Valley limestone, which separates 
these two prominent shale horizons. Here the shale units may be partly or completely 
missing. Some thin horizontal sheets of quartz monzonite were found in the red shales of 
the Abo formation, but their size and distribution are minor in comparison with those 
found at the Percha and basal Magdalena shale horizons. 

On Plate 1, the Precambrian through Silurian rocks do not show the same degree of 
irregularity in their contacts with the quartz monzonite as do the Upper Paleozoic rocks. 
The Cambrian through Silurian sediments apparently acted as single rigid blocks, 
competent enough to resist any sill-making tendencies of the magmatic intrusion. This is 
not the case with the Devonian through Permian sediments. 

Some of the localities and horizons at which the quartz monzonite forms a partly 
conformable mass within the Paleozoic strata are listed below: 

1. One and one-half miles south of Kingston, approximately at the basal 
Magdalena shale horizon. 

2. In Drummond Gulch, at the basal Magdalena shale horizon. 
3. A quarter of a mile south of the Gray Eagle mine, overlying the Fusselman 

dolomite. 
4. A quarter of a mile northeast of the Gray Eagle mine, at the Percha shale to 

basal Magdalena shale horizons. 
5. Two miles southwest of Kingston, at or over the Percha black shale horizon. 
6. In Middle Percha Creek, 2½ miles west of Kingston, within the Abo red shales. 
7. One and one-half miles northwest of Kingston, at the Percha shale horizon. 

 
Two possible hypotheses concerning the shape of the quartz monzonite intrusive 

are considered, namely: 
1. The quartz monzonite is a large intrusive mass which would increase its 

dimensions in depth, as suggested by Harley (1934, p 99). The large limestone masses are 
xenoliths or roof pendants which were floating or suspended in the magma. 

2. The horizontal masses of quartz monzonite are the result of a lateral spreading 
of the magma from high-angle fault or fracture zones into certain favorable sedimentary 
horizons. 
 

The density variations in sediments and glassy igneous rocks (Birch, et al., 1942, 
pp 16-25) show that the large floated xenoliths required by the first hypothesis might be 
possible. However, the Precambrian through Silurian rocks are not interpenetrated by the 
quartz 
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monzonite to the same degree as the younger Paleozoic sediments. No possible xenoliths 
or roof pendants of the Precambrian through Silurian rocks were found. 

Therefore, the second hypothesis, outlined above, seems to the author to offer the 
more likely explanation. The almost parallel orientation of sediments enclosed by the 
quartz monzonite, and the presence of several thick conformable igneous masses which 
are both floored and roofed, strengthens this interpretation. Along Middle Percha Creek, 
persistent small intrusive masses (see pl 1) form discordant dikes near their western 
terminus and sills to the east. Such intrusions are not unknown in the western United 
States (see Balk, 1948, p 124). This conclusion imparts an orderly interpretation to the 
distribution of the quartz monzonite porphyry and has been followed in drawing the ge-
ologic cross-section (see pl 1). However, several small erratically oriented blocks of 
sediments which have been mapped might best be explained as a result of stoping, since 
magmatic pulsations in a -near-surface intrusive of this kind might easily loosen large rock 
blocks (Balk, 1948, p 125). Possible causes of this lateral spreading of the quartz 
monzonite will be discussed in a later section. 

Megascopically the unaltered quartz monzonite is a gray aphanitic porphyry with 
abundant white euhedral feldspar phenocrysts, 1 cm and less in maximum diameter. Small 
phenocrysts (2 mm and less) of hexagon-shaped biotite flakes and prismatic hornblende 
laths are common. Since most of the rock has been altered to epidote-chlorite aggregates, 
the average specimen is green. 

The outcrops are massive, well-jointed, limonite-stained, and show spheroidal 
weathering. Some of the joints are coated with green epidote veneers. Numerous zones 
within the quartz monzonite porphyry and many of the contacts are brecciated, and silica, 
calcite, and epidote have locally replaced portions of the breccia matrices. 

Microscopically the rock is holocrystalline, porphyritic, with a very fine-grained 
(about 0.2 mm) xenomorphic-granular groundmass, which in some of the thinner veins 
contains feldspar microlites. A delicate planar structure is apparent within 1 inch of the 
contact. This rock is altered so intensely that its primary composition could be estimated 
only in 5 of the 27 thinsections examined. The minerals are listed in Table 3. 

The feldspar in the quartz monzonite forms large (2 mm) glomero-porphyritic 
aggregates and phenocrysts, which are partially rounded and embayed by the groundmass. 
Locally plagioclase overgrowths have increased the idiomorphism of the rounded 
phenocryst nuclei. The resorption or rounding may be the result of the pressure decrease 
after intrusion of the magma to shallow depth (Bowen, 1928, p 183). Normal zoning is 
found in some of the less altered plagioclase. In general, the smaller the phenocryst the 
more euhedral. 

Table 4 presents the significant optical properties of the feldspars in the quartz 
monzonite porphyry. The intermediate index was measured in immersion oils, and the 
remaining optical properties were determined in thinsection on the universal-stage 
(Emmons, 1943). Fair-bairn and Podolsky (1951) have measured the precision and 
accuracy 
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Figure 10 

PLAGIOCLASE PHENOCRYSTS IN THE QUARTZ MONZONITE PORPHYRY. THE 
ISLAND-LIKE BLACK AREAS ARE FELDSPARS WITH OPTICAL PROPERTIES DIFFERENT 

FROM THE ENCLOSING PHENOCRYST. SEE TEXT AND TABLE 4. CROSSED 
NICOLS. 

of universal-stage optic-angle (2V) determinations. Their maximum error of 2.8 degrees 
for plagioclase would probably be applicable to the optic-angle (2Vα) determinations in 
Table 4. The occurrence of the feldspars has been tabulated into four groups which have 
been labeled P, G, and E, where P indicates a phenocryst, G a part of the ground-mass, I an 
islandlike relict of a feldspar in a phenocryst, and E the rest of the material of the feldspar 
phenocryst enclosing the islandlike relict. The composition of the plagioclase, with the 
exception of the high-temperature form, was determined by the optical properties, utilizing 
charts prepared by Kennedy (1947). The composition of those plagioclases exhibiting 
small optic angles (2Vα) and large extinction angles was determined, very crudely, by 
using the graph which Tuttle and Bowen (1950, fig 4) have presented. 

Many phenocrysts contain small poikilitic inclusions of feldspar, which are in optical 
continuity with each other and have a different extinction from the enclosing phenocryst. 
Such islandlike remnants are illustrated in Figure 10. The data, determined on these 
islandlike remnants (I) and on the corresponding enclosing material (E), are summarized in 
lines 5 through 12 of Table 4. Unfortunately, the grain size and rock alteration are such as 
to preclude X-ray verification of the interpretations listed in Table 4, so that the 
conclusions must not be regarded as certain. 
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TABLE 3. MINERALS OF THE QUARTZ 
MONZONITE PORPHYRY 

PRIMARY MINERALS AND ABUNDANCES SECONDARY MINERALS 

Percent Calcite 
Plagioclase (An30-38)---------------------------------------44  Plagioclase (An5-17) 
Orthoclase ---- -------------------------------------------- 27  Chlorite 
Quartz ------------------------------------------------------16 Sericite 
Brown biotite ----------------------------------------------- 4 Quartz 
Hornblende ------------------------------------------------- 2 Green biotite 
Magnetite --------------------------------------------------- 3 Epidote 
Apatite  ------------------------------------------------------ x Pyrite 
Sphene ------------------------------------------------------- x Hematite 

x Indicates present. Here, secondary minerals include both alteration and replacement products. 

The conclusions to be drawn concerning the feldspars are that: 
1. The anomalous properties of the feldspars listed in Table 4 suggest that both 

high- and low-temperature forms are present. 
2. Potash feldspar and two plagioclases, of approximate composition An30-36, and 

An5-17, are present. 
3. The more albitic plagioclase (An5-17) in the groundmass and enclosing the 

islandlike relicts seems to be best explained as a low-temperature replacement product 
following the crystallization of the quartz monzonite magma. 
 

Studies of the differences in the optical properties of the feldspars in coarser-
grained plutonic rocks less altered than the quartz monzonite porphyry, might provide, 
when combined with X-ray data, a valuable criterion for determining the origin of 
plutonic rocks (see Fairbairn and Podolsky, 1951, p 832). Detailed optical studies of the 
feldspars were carried out for this reason, although the Tertiary age and shallow depth of 
the quartz monzonite intrusions leave little doubt as to the igneous origin of this rock. 

Quartz, which is less than 5 percent in some thinsections, occurs almost exclusively 
in the groundmass. Only two quartz phenocrysts were noted in the 27 thinsections 
examined. In the matrix the quartz is anhedral and larger groups of quartz grains enclose 
poikilitically small feldspar laths. Therefore, the quartz was probably the last primary 
mineral to crystallize. 

The brown biotite is anhedral, corroded and almost completely altered to a 
bleached biotite, so that only in a few grains can a faint-brown to colorless pleochroisrn 
be noticed. Hornblende laths could be determined in only one thinsection; however, in 
the remainder alteration and replacement have not destroyed the lath-shaped forms or the 
pseudohexagonal cross-sections. Of the remaining minor constituents, apatite and sphene 
occur as small euhedra, and magnetite as small anhedra. Magnetite and apatite are 
common as inclusions in the biotite. 



 

TABLE 4. OPTICAL PROPERTIES OF FELDSPARSa OF THE QUARTZ MONZONITE PORPHYRY 

a Explanation in text. 
b P indicates a phenocryst, G a groundmass grain, I an islandlike relict of a feldspar in a phenocryst, and E the remaining phenocryst material enclosing the 

islandlike relict. 
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Minute fractures in the quartz monzonite porphyry have been filled with calcite, 
quartz, chlorite, and epidote. The central parts of some of the fractures containing 
chlorite and epidote are filled with an albitic plagioclase. This suggests that the 
replacement plagioclase (An5-17) formed later than the chlorite .and epidote. Similar 
replacements are commonly regarded as deuteric in origin (see Buddington and 
Callaghan, 1936). Secondary minerals are concentrated particularly in the vicinity of 
fractures. 

The secondary minerals, excluding plagioclase, have replaced considerable parts 
of the feldspar, brown biotite, hornblende, and matrix. The (0112) glide-plane lamellae 
of the calcite are prominent in some places and have been transected by minute chlorite 
shreds, suggesting the relative ages of the calcite and chlorite. Some of the original 
plagioclase has been replaced parallel to the cleavage directions by quartz and other 
materials, so that where replacement was most effective the plagioclase is divided into 
rounded rectangular patches separated by quartz. The green biotite occurs as small 
shreds with a radial or fibrous habit, maximum interference color of first-order red, a 
positive elongation, and a green to colorless pleochroism. It is very fresh in appearance 
and might be called chlorite, except for its birefringence. Hematite clouding is common 
throughout the rock, and as stringers in, and rims around, altered, biotite and hornblende. 
Pyrite grains are best seen in the hand specimens, although a few were noticed in 
thinsection. 

The petrographic work on the feldspars has verified the igneous origin of quartz 
monzonite. The absence of quartz phenocrysts, and the secondary alteration and 
replacement in the intrusive quartz monzonite, are important criteria for differentiating 
this unit from later intrusive rocks. In addition, the absence of intense alteration and 
sulfide mineralization in all later rocks is evidence that alteration and ore deposits were 
formed at or near the end of the quartz monzonite porphyry intrusion. 

CONTACT METAMORPHISM AND MINERALIZATION 
There is very little obvious contact metamorphism near the quartz monzonite 

porphyry intrusions. Within the quartz monzonite, directly at the contact just north of the 
Gray Eagle mine, there are very abundant small (0.5 mm) euhedral diopsidic pyroxene 
grains. In the adjacent limestones there are large, elongated (18 inches and less) light-
green chert-nodulelike masses. Under the microscope these soft masses were determined 
as fine intergrowths of calcite and serpentine. West of the crest of the range, many of the 
chert nodules in the Lake Valley limestone have a rim of fibrous wollastonite. Here, 
some of the fractures are lined with small dodecahedral yellowish-brown garnet crystals, 
whereas in the recrystallized calcite there are sparse large (up to 3 inches) rounded 
reddish-brown garnets. One siliceous bed is composed of very finely intergrown quartz, 
calcite, wollastonite, and clay alteration products. The limited occurrence of these 
metamorphic minerals suggests that metamorphism was effective only in very small 
pockets 
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and fractures, which emphasizes again the near-surface nature of the quartz monzonite 
intrusion. 

Considerable faulting occurred before the major ore deposits and the secondary 
minerals in the quartz monzonite porphyry were formed. The evidence for this is that 
fault breccias of the quartz monzonite and all older rocks may have their matrices filled 
or replaced by quartz, calcite, and minor amounts of copper, lead, and zinc ore minerals. 
In addition, because the sulfide deposition is greatest where the secondary minerals are 
significant in amount, it seems probable that they were formed almost at the same time. 

Ore deposits of the Kingston area have been described in moderate detail by Harley 
(1934) as consisting largely of copper, lead, and zinc sulfides, and their related oxidized 
minerals; the oxides, carbonates, and silicate of manganese; silver, either as a separate 
mineral or combined in other minerals; minor gold; and alabandite. Two varieties of ore 
deposits are found: nearly vertical veins and breccia zone replacements, and tabular 
bodies of replaced limestone, which were once overlain by a shale layer, in most places 
the Percha shale. 

The rocks younger than the quartz monzonite porphyry have not been mineralized 
extensively. In the tuffaceous rhyolite, there are sparse opaline veins. One mile east of the 
Gray Eagle mine, cavities in a white rhyolite dike are lined with purple octahedral 
fluorite crystals. 

RHYOLITIC IGNEOUS ROCKS  
TUFFACEOUS RHYOLITE 

This unit has the largest areal extent of all the formations. Throughout the western 
part of the area, it is exposed for a distance of approximately 8 miles along State 
Highway 180 (see pl 1). Along the crest of the range, a short distance north of the State 
Highway, it forms the highest topographic features. In the vicinity of Kingston and east 
of the mapped area, the tuffaceous rhyolite crops out over smaller discontinuous areas, 
which presumably are erosional remnants of a once more extensive volcanic sheet. 

The tuffaceous rhyolite is separated from the underlying early andesite volcanics in 
most places by an angular unconformity varying from 11 to 39 degrees. Approximately 1 
mile north-northwest of the Gray Eagle mine, the planar structures of both these 
formations are essentially parallel. A half mile northwest of Kingston, an agglomeratic 
part of the tuffaceous rhyolite overlies the red beds of the Abo formation. In most of the 
mapped area the tuffaceous rhyolite is the surface unit. Near the western map boundary, 
however, it is overlain with approximate conformity by the arkosic sediments and tuffs, 
and the late andesite volcanic sequence. 

The tuffaceous rhyolite forms a tabular body with an estimated minimum thickness 
of 1,300 feet. It is exceedingly uniform, devoid of marker horizons, extremely brecciated 
in places, and traversed by abundant joints. The large mass of tuffaceous rhyolite in the 
western part of the area is presented in the cross-section and map (pl 1) completely 
unmarred by faults, although this would indicate a thickness 
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measurable in miles. Faulting could not be detected here, but is suggested by the 1,300 to 
1,800 feet thicknesses of some of the smaller tuffaceous rhyolite masses to the east. 

Contrasted with earlier formations in the Black Range, the tuffaceous rhyolite is at 
the surface over large, continuous areas, and this suggests that the range had undergone 
most of the faulting before the rhyolite was formed. The faults which transect the 
tuffaceous rhyolite deviate very little from the north-south regional trend in New Mexico. 

In the western part of the mapped area, the planar structures in the rhyolite dip to 
the west and southwest at a variable angle rarely greater than 55 degrees. Along the crest 
of the range, the dip is to the north or northeast at an angle of 30-70 degrees. In the 
vicinity of Kingston the planar structures dip eastward at 30-50 degrees. 

Two structure elements produce the linear and planar structure of this rock. 
Cavities, presumably formed by gas, are sparse throughout the rock unit, but in numerous 
places abundant cavities, 6 inches and less in length, are flattened, elongated, or both, so 
that one may measure a planar or a linear structure. Within the groundmass of the 
tuffaceous rhyolite, which has a uniform color over a limited area, one finds lighter-
colored irregular lenticular areas. The long dimensions of these lenses, which range from 
several feet to less than an inch in length, are approximately parallel and produce a 
second type of planar element. Under the microscope, the contacts of these lenses with 
the normal groundmass are invisible, though occasionally slight differences in the 
amount of hematitic clouding mark the lens borders. 

Locally, steep surfaces of the tuffaceous rhyolite faintly resemble a rock with 
columnar jointing. However, sheetlike planar jointing is very common. These joints 
within a limited area are approximately parallel and are spaced 10 inches or less apart. 
Careful inspection of many of these joint surfaces reveals that a few contain small 
slickensided areas. Most of the joints vary in dip from 55 to 90 degrees and show no 
preferred strike, nor any systematic relationship to the planar structures. 

Most of the tuffaceous rhyolite is a massive gray, violet-gray, white, pink, or brown 
aphanitic porphyry. The phenocrysts comprise approximately 13-69 percent of the rock 
and consist of quartz, feldspar, and biotite. Their size is 4 mm and less. The quartz is 
commonly dipyramidal. Much of the feldspar has a silken luster and is white and/or 
pinkish white. 

A striking feature of this rock is the common presence of angular to rounded 
xenoliths varying greatly in size. Most of the xenoliths, which consist primarily of 
fragments of the early andesite volcanic sequence and rarely of red shale fragments, are 
distributed uniformly throughout the entire tuffaceous rhyolite unit. These xenoliths are 
30 mm and less in size. In several areas the xenoliths assume such importance that they 
have been mapped as separate zones (pl 1). This will be discussed in detail in a later 
section. 

No glass or glassy zone was found at the base of the tuffaceous rhyolite. In one 
locality, on a weathered surface, a black eutaxitic banding is prominent, which resembles 
glass lenses, but is actually 
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the result of a darker weathering of parts of the groundmass. The concentration of foreign 
particles appears to increase near the base of the tuffaceous rhyolite, and in thinsection 
the matrix contains more darker-colored well-altered material, possibly indicating that 
surface material was incorporated into the .base of the tuffaceous rhyolite. The 
predominant basal unit, with an estimated maximum thickness of 70 feet, is made up of 
agglomerate and lapilli to fine tuff beds. The fragments in these basal beds are 3 feet and 
less in diameter and consist of subangular to round tuffaceous rhyolite. Tuffaceous 
rhyolite of a differing color forms the matrix. Locally the fragments are as round as those 
of a basal conglomerate. Interbedded with the agglomerates are gray to white .tuff beds, 
6 feet and less in thickness, and of varying grain size.  

Three-fourths of a mile south of the B in the cross-section line on the map (see pl 
1), there are some interbedded tuffs and agglomerates. This is the only locality in which 
bedded pyroclastic rocks are found within the 'main mass of the tuffaceous rhyolite. 
These bedded pyroclastic rocks do not resemble those found at the base of the tuffaceous 
rhyolite. 

In the western part of the tuffaceous rhyolite, near the stratigraphic top, there are 
sparse black glass lenses. In most localities, the upper part of the tuffaceous rhyolite 
consists of white, porous or clayey tuff, and a few agglomerate beds. This tuff is massive, 
or very fine-grained and thin-bedded, and resembles the tuffaceous rhyolite, except for 
its altered and crumbly matrix. These tuff beds have been mapped as part of the 
overlying arkosic sandstone, conglomerate, and tuff unit. 

Microscopically, the tuffaceous rhyolite consists of a glassy to cryptocrystalline 
matrix. Devitrified groundmass has a radial or spherulitic texture, as defined by Marshall 
(1935). No glass shards or shreds are discernible. However, in the tuff beds at the base 
and the top of the tuffaceous rhyolite, and in accessory fragments in the xenolith zone, a 
plumose texture may be present (Marshall, 1935). The plumose texture, which appears to 
be formed by glass shards and shreds, can be compared easily with the texture which is 
found in the larger part of the tuffaceous rhyolite by inspection of Figure 11. Similar 
examples of plumose texture are illustrated by Gilbert (1938), Mansfield and Ross 
(1935), and Marshall (1935). The matrix of the glassy lenses is massive and locally 
shows a eutaxitic structure. The glass has an index of refraction of 1.497 (+0.002). It 
contains considerable amounts of finely ground crystalline rock flour. The eutaxitic 
banding is shown by slight color differences between those parts of the glass with much 
rock flour and those with little or none. 

The phenocrysts are seriate, subhedral, fractured, bent, rounded, and embayed by 
the groundmass. They constitute 13 to 69 percent of the rock (see fig 12). Table 5 
presents the average mode of the tuffaceous rhyolite. 

Sanidine phenocrysts have an optic angle (2Vα) of 30 degrees or less and the 
following refractive indices (± 0.002): α=1.516, β=1.522, γ=1.523. Some plagioclase is 
completely or partially enclosed by the sanidine. Two types of sanidine occur in the 
tuffaceous rhyolite, 



 
Figure 11 (left). PLUMOSE TEXTURE IN XENOLITH ON LEFT, NORMAL TEXTURE OF TUFFACEOUS RHYOLITE ON THE RIGHT.  

Figure 12 (right). ROUNDED, CORRODED, AND FRACTURED PHENOCRYSTS IN TUFFACEOUS RHYOLITE. DIAMETER OF FIELD IS 4 MM. 



although a single thinsection contains only one kind. The one variety is uniform in 
appearance, whereas the other is made up of irregular shreds, which are most apparent at 
or near extinction because of slightly different extinctions (see fig 13). Optically, except 
for the extinction, these shreds are identical. Secondary overgrowths of albite enclose the 
sanidine rarely. 

Plagioclase, in general, forms smaller phenocrysts than sanidine. Rarely, it encloses 
small biotite flakes. The optical properties, except for the indices of refraction, are of little 
value in determining composition. This is to be expected, because high-temperature 
plagioclase occurs commonly in volcanic rocks. In immersion oils the intermediate index 
ranges from 1.53 to 1.55. This corresponds to a composition ranging from An10 to An35. 
In a single thinsection, the composition appears to be quite uniform. The zoned 
plagioclases have, as a rule, an index greater than that of balsam (1.54±), whereas the 
unzoned plagioclases have a smaller index. Very rarely, one finds plagioclase with 
myrmekitelike inclusion zones similar to those found in the flows of the early andesite 
volcanic sequence. 
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The biotite flakes are bent and crumpled, and show the most alteration of any of the 
phenocrysts. Many of the brown biotite phenocrysts have been partly bleached 
peripherally and along cleavage cracks 

TABLE 5. AVERAGE MODES OF THE RHYOLITIC ROCKS 
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Figure 13 

THE TWO VARIETIES OF SANIDINE PHENOCRYSTS FOUND IN THE TUFFACEOUS 
RHYOLITE. THE ONE VARIETY APPEARS CLEAR AND HOMOGENEOUS, AND THE 

OTHER IS CLOUDED AND SHOWS SHREDLIKE AREAS OF SLIGHTLY DIFFERING EX- 
TINCTION. PHENOCRYSTS ARE ABOUT 2 MM LONG. 

to a colorless biotite. Hematite rims are common around biotite: The pleochroism in most 
of the grains varies from brown to colorless, al-though yellowish-green and olive-brown 
colors are rarely to be noted. Some of the grains have been oxidized to a deep red, either 
peripherally, along the cleavages, or throughout. Within the same thinsection, some 
biotite flakes may be oxidized to a red color, whereas others are still brown. In contrast, 
biotite in the xenolith zones displays a normal brown and shows no trace of a red 
oxidation color. 

The occurrence of sparse common green hornblende in a rock of this nature is 
regarded as unusual. Although the hornblende is only an accessory mineral, it was present 
in every thinsection examined. The grains are subhedral, rounded, and embayed. 
Identification of the hornblende is based on its maximum extinction of 15-21 degrees, 
birefringence of approximately 0.023, a pleochroism ranging from a green or brownish 
green to a colorless or very pale yellowish-green, the amphibole cleavage, and an optic 
angle (2Vα) of approximately 60 degrees. Several very rare pyroxene grains form relicts 
enclosed by the hornblende. Because of the optical continuity of the pyroxene relicts, this 
suggests a replacement of the pyroxene by the hornblende. 

It was desirable to know to what extent the green hornblende may have been 
oxidized to basaltic hornblende. Three small phenocrysts of hornblende were each 
divided into two parts. One of these parts in each case was maintained at a temperature of 
approximately 850°C for a 3-hour period. Subsequent comparison of both parts of the 
phenocrysts reaffirmed the pronounced changes which have been described 
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in detail by Barnes (1930) and others. After heating, the phenocrysts had a parallel 
extinction, birefringence greater than 0.050, and a pleochroism ranging from an orange 
brown to a pale orange. 

One of the heated phenocrysts was obtained from a specimen containing lenses of a 
black glass, which was collected at the extreme top of the tuffaceous rhyolite in the 
western part of the area (see pl 1). A second specimen came from the xenolith zone, and a 
third from a position approximately halfway between these two localities (see pl 1). The 
change in the hornblende of each of these phenocrysts was identical. 

The hornblende in many places encloses small biotite grains of reddish-brown color 
in random orientation. In only one grain did the biotite inclusions have a common 
orientation and elongation parallel to the hornblende cleavage. Magnetite and apatite 
inclusions are numerous in both the biotite and hematite. The possible temperature 
significance of the hornblende and biotite will be discussed at the end of this section. 

The mineral which has been called albite (see table 5) occurs in fractures in the rock, 
enclosing sanidine as an overgrowth, and replaces sanidine and plagioclase phenocrysts 
along fractures, cleavages, and in irregular areas. It is fine-grained, and common in only a 
few thin-sections. Its properties are: (1) indices greater than sanidine and less than 
plagioclase phenocrysts and balsam, (2) simple and polysynthetic twinning, (3) maximum 
extinction of 16 degrees, (4) higher birefringence than either sanidine or plagioclase, and 
(5) an optic angle (2Vα) of 110 degrees. 

Chemical analyses from the xenolith zone, listed under R2 and V2 in Table 6, are 
probably representative of the tuffaceous rhyolite. 

The properties of the tuffaceous rhyolite correspond closely to those of nuées 
ardentes (Lacroix, 1904), welded tuffs (Iddings, 1899), or sillars (Fenner, 1948). There are 
some differences, however, which may be of genetic significance. The tuffaceous rhyolite, 
for example, has abundant accidental xenoliths, which in the xenolith zones are extremely 
large. Such fragments are unknown in nuées ardentes, although they are not uncommon in 
explosively ejected material, according to Lacroix (1904, p 206). Moore (1934, p 374), 
listing the criteria for a welded tuff deposit, states, "Material from one magma and no 
extraneous material." Fenner (1948) described a rock unit under the heading "Abnormal 
Tuff" because it contains large amounts of extraneous matter. 

It is believed that, in general, planar structures in a welded tuff are not caused by 
flow, but rather by compaction of the originally loosely deposited particles, so that gas 
cavities are rare. The linear gas cavities in the tuffaceous rhyolite could not have been 
produced by compaction alone, but require a flow. In addition, the planar structures of the 
xenolith zone, shown by the lighter-colored lenses, bend around the xenoliths in a flowlike 
manner, even within small outcrops, so that the possibility that this structure was formed 
by compaction seems remote. Mansfield and Ross (1935) have illustrated a 
megascopically massive obsidian which still shows microscopically structures of glass 
shards and shreds. 'Nothing of this sort has been found in the vitro- 
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Plate 2: Spheroidal masses of lighter carbonate and spheroidal cavities in the Montoya 
limestone. See text. Ladrone Gulch. 
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Plate 3: A. Enlarged polished surface of tuffaceous rhyolite. 
Enlarged 3X with respect to B. 

B. Polished surface of rhyolite porphyry. About actual size. 
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phyres or glassy lenses of the tuffaceous rhyolite. No pumice fragments, collapsed or 
otherwise, were detected in more than 90 thinsections or in the field. 

The largest percentage of phenocrysts described in a welded tuff is 25 (Mansfield 
and Ross, 1935), whereas the tuffaceous rhyolite contains an average of 40 percent. This 
may have affected the properties considerably. Perret (1934) has shown that nuées 
ardentes and gas-free lava do not tend to be extruded at the same time. However, ferret's 
Chart I shows that the cyclical alternation of these two extrusive phases is so short that the 
processes may be considered simultaneous. Fenner (1937) emphasizes the fact that 
volcanic material may be deposited by a great variety of processes. Ross and Smith 
(Smith, Robert L., personal communication) would probably use the term "welded tuff" to 
designate a volcanic deposit of this kind, and specify that it consists of "ash flow tuffs" 
and "ash fall tuffs." On the basis of the abundant accidental xenoliths, and the deduced 
origin of at least part of the planar and linear structure, it is concluded that a large part of 
the tuffaceous rhyolite actually flowed, using the term flow in its elementary sense and 
not in terms of modern rheology. The name tuffaceous rhyolite was chosen to signify both 
particulate flows and pyroclastic material. 

Kozu and his coworkers (see Gilbert, 1938, p 1856) have shown that at atmospheric 
pressures biotite transforms from a brown to a red color beginning at 400°-500°C and 
continuing almost to 1,000°C. On this basis the temperature at the time of deposition of 
the tuffaceous rhyolite was greater than 400°-500°C. Because the dipyramidal quartz and 
sanidine phenocrysts are corroded, one might conclude that the temperature was greater 
than 870°C (Rogers and Kerr, 1942, p 184), and equal to or greater than 1,063°C (Bowen 
and Tuttle, 1950, p 496), respectively, for each of these minerals. However, the melting 
point of the sanidine (Bowen and Tuttle, 1950), and probably of the quartz, would have 
been considerably lowered by the presence of water and other constituents in the liquid 
phase. 

The presence of common green hornblende may indicate a temperature less than 
850°C, because this is the transition temperature at which common hornblende readily 
changes into basaltic hornblende in a dry laboratory system open to the atmosphere 
(Barnes, 1930). However, Barnes found that a lack of oxygen might prevent the transition 
from green to brown hornblende. In nature, brown basaltic hornblende is common in 
basalts. Does a basaltic lava flow have more available oxygen than a particulate rhyolitic 
flow or nuée ardente? If so, the hornblende will have no temperature significance. Yet 
sufficient oxygen was present to change some of the biotite from brown to red. With more 
data concerning these oxidizing transformations, the biotite and hornblende might be used 
as a geothermometer for volcanic rocks; they might also, by inference, provide the basis 
for estimating the minimum temperature at which a magma may exist. 

One or more of the following explanations may account for the green color of the 
hornblende: 

1. The temperature at the time of extrusion was below 850°C. Jaggar's (1917) 
measurements of the Kilauean lava immediately below 
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the surface show a temperature range from 750° to 850°C. Possibly basaltic Kilauean lava 
might have a higher temperature than many acidic tuffs and flows. Most measured 
volcanic temperatures, however, are higher than 850°C (see Barth, 1952). 

2. The oxygen concentration may have been too low to oxidize the hornblende. 
3. After or during cooling, the hornblende may have changed back into the green 

variety. Where the green hornblende is enclosed by, or adjacent to, glass lenses, this 
requires a transformation in spite of extreme quenching. 

RHYOLITE. PORPHYRY 
This rock has its largest areal extent north and south of State Highway 180 in the 

vicinity of Iron Creek, west of the crest of the Black Range. Smaller outcrops are found 
south of the xenolith zone, and in several other localities. 

West of the crest of the range, at contacts with the early andesite volcanic sequence, 
both the phenocrysts and groundmass in the rhyolite porphyry are abnormally fine-
grained. Both the early andesite and the rhyolite porphyry are altered considerably near 
their contacts, so that they break into loose debris very readily. Sparse thin quartz veins 
are present in the early andesite near the rhyolite porphyry, and a few small fragments of 
the early andesite sequence may be found in the rhyolite porphyry near the contacts. The 
contacts are vertical or very steep for the most part and trend primarily in a north-south 
direction. Therefore, the rhyolite porphyry forms large irregular dikelike masses of a 
general north-south trend, which have been intruded into the early andesite sequence. The 
east-west cross-section of these dikelike masses is interpreted as funnel-shaped (see pl 1), 
because southward, and topographically higher, the rhyolite porphyry has a greater areal 
extent. 

Southwest of Iron Creek the contact between the tuffaceous rhyolite and the 
rhyolite porphyry appears to be gradational, although the exposures in this locality are not 
too good. Elsewhere the contact between these two rock units, although clearly marked 
topographically, contributes nothing to a knowledge of their age relations. 

The rhyolite porphyry is a massive pink, cream, gray, or light-brown aphanitic 
porphyry. The seriate phenocrysts, comprising approximately 60 percent of the rock, are 
very striking, because of the large size which they attain. The maximum dimension of the 
phenocrysts is of the order of 4 inches. In hand specimens sanidine and quartz form the 
larger, most euhedral, and most abundant phenocrysts, while plagioclase and biotite are 
smaller and apparently less abundant. The quartz grains display rarely a dipyramidal 
habit, and in many places sanidine and plagioclase phenocrysts are enclosed by quartz. 
Locally this rock has a planar structure which appears to vary randomly from outcrop to 
outcrop. The rhyolite porphyry weathers spheroidally and crumbles into pebbles and 
granules. 

Microscopically the rhyolite porphyry resembles the tuffaceous rhyolite closely. 
Both contain the same minerals, although the relative 
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proportions differ slightly (see table 5). The rhyolite porphyry is more altered in general 
and has fewer fractured phenocrysts. Phenocrysts of the porphyry are more rounded and 
embayed, and secondary over-growths on the corroded grains are more common. The 
matrix is very fine-grained xenomorphic-granular, but not cryptocrystalline or glassy, as 
in the tuffaceous rhyolite. Xenoliths are almost unknown in the rhyolite porphyry. Most 
of the sanidine phenocrysts in the rhyolite porphyry are composed of irregular shreds, as 
described under the tuffaceous rhyolite. No red biotite was found in the rhyolite porphyry. 
These differences between the intrusive rhyolite porphyry and extrusive tuffaceous 
rhyolite seem to be consistent with the differences in the loci of crystallization and the 
consequent pressure, temperature, and cooling conditions. 

The petrographic similarity of these two rocks in every other aspect is so great that 
further repetitive description is omitted. The difference is of degree rather than kind. Plate 
3, by eliminating the grain size differences, allows a direct comparison of the tuffaceous 
rhyolite and rhyolite porphyry, since the tuffaceous rhyolite has been enlarged relative to 
the rhyolite porphyry. For these reasons, it is concluded that the tuffaceous rhyolite and 
rhyolite porphyry are consanguineous. In addition, the high stratigraphic horizon intruded 
by the funnel-shaped rhyolite porphyry, the suggested gradational contact southwest of 
Iron Creek, and the petrographic similarity, between the tuffaceous rhyolite and the 
rhyolite porphyry suggest that the rhyolite porphyry now occupies one of the feeding 
zones through which much of the extrusive rhyolitic material passed. 

Approximately 1½ miles north-northwest of the Grandview mine, there are several 
poorly exposed lenses of a medium-grained, tan rock enclosed by, and forming a 
moderately sharp contact with, the rhyolite porphyry. Microscopically this rock is 
xenomorphic-granular and is conspicuous by its lack of groundmass (see fig 14). It 
contains the same minerals as the enclosing rock, although the relative proportions are 
quite different. This is not unexpected, since it has no matrix. 

The mineral constituents and the geologic location make it probable that the even-
grained xenomorphic-granular phase is related to the surrounding rhyolite porphyry. In 
addition, the high-temperature minerals prove that crystallization occurred from an 
igneous melt. This is of great interest, for Drescher-Kaden (1948) has emphasized the dif-

ference between positive igneous textures (glasses and porphyries) and plutonic rock 
textures (e.g., xenomorphic-granular). 
 
SMALL RHYOLITIC INTRUSIVE MASSES 

The smaller dikes and sills east of the longitude of the Grandview mine may be 
divided into three varieties. These are rhyolite porphyry, green vitrophyre, and normal 
rhyolitic dikes and sills. The rhyolite porphyry dikes are identical with the larger rhyolite 
porphyry masses both megascopically and microscopically, and need not be discussed 
further. 

Megascopically, the normal rhyolitic dikes look like white unglazed porcelain, with 
abundant phenocrysts approximately 1 mm in 



 
Figure 14 (left). XENOMORPHIC-GRANULAR PHASE OF RHYOLITE PORPHYRY. MINERALS PRESENT ARE QUARTZ, SANIDINE, BIOTITE, AND 
MAGNETITE. CROSSED NICOLS. 

Figure 15 (right). PERTHITE (GRAY, RAGGED APPEARANCE) AND QUARTZ (MOSTLY WHITE) WITH SPHERULITIC FRINGES OF SODIC 
PLAGIOCLASE IN RHYOLITE SILL IN DRUMMOND GULCH. CROSSED NICOLS. 

DIAMETER OF FIELD IS 3 MM. 
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size. These dikes show a banding or flow structure parallel to their contacts. Locally the 
matrix is composed of a brown glass, and here the phenocrysts are surrounded by small 
concentric rims of devitrified glass. 

The average mode of the normal rhyolitic dikes is listed in Table 5. 
Microscopically, the matrix ranges from glass to very fine-grained quartz and acid 
feldspar. The index of the glass is 1.485 (±0.002). 

The phenocrysts are subhedral, rounded, embayed by the ground-mass, and in 
several instances are fractured and broken. Their proper-ties are closely identical to those 
described under the tuffaceous rhyolite. The phenocrysts comprise only about 10 percent 
of the rock. Plagioclase (An10-35) is much scarcer relative to the quartz and potash 
feldspar (see table 5), and no albitization of the feldspars was found. 

A sill, 20 feet thick, occurs approximately 1 mile southwest of the Gray Eagle 
mine. In hand specimens this rock is gray, with a flow structure indicated by green and 
pink banding near the contacts. The phenocrysts are about 1 mm in length and many have 
a small concentric shell of a lighter-colored material, so that this rock is apparently 
identical with the other small intrusive rhyolitic masses. In thinsection (see fig 15), 
however, it differs in that the potash feldspar is perthite, and radial and spherulitic 
growths of an albitic plagioclase are common. 

The minerals in this sill are quartz, perthite, albitic plagioclase, biotite, and the 
same accessory minerals found in other rhyolitic rocks of this area. The phenocrysts are 
subhedral, rounded, and embayed by the groundmass. Plagioclase of the perthites forms 
elongated shreds and irregular patches. The maximum extinction of the plagioclase part 
of the perthite is 14.5 degrees, which corresponds to a composition of An5. Most of the 
phenocrysts are surrounded by the spherulitic albitic plagioclase, and they seem to have 
acted as nuclei for the crystallization of the albitic plagioclase. Small skeleton crystals 
have been enclosed by the spherulitic plagioclase. The groundmass of this rock consists 
of anhedral interlocking quartz, perthite, biotite shreds, and secondary sericite. Much of 
the feldspar is euhedral and is enclosed by the quartz. 

The perthitic intergrowths suggest that the temperature of this sill was lowered 
much more slowly than that of other rhyolitic rocks in this region. The possibility of a 
secondary origin for the perthites seems to be precluded by the corroded phenocrysts, the 
spherulitic growths, and the occurrence of this sill in unmetamorphosed Carboniferous 
sediments. 

Small green vitrophyre dikes are found in the area. For the most part, the outcrops 
consist of loose piles of glass rubble. Several excellent road cuts (see figs 16-17) 
demonstrate that the vitrophyre forms dikes. The dikes are partially devitrified along their 
contacts. Most of the green glass has a well-developed system of fractures approximately 
parallel to the contacts. In addition, many randomly oriented fractures are present. The 
glass tends to split along the dull fractures rather than to form vitreous conchoidal 
surfaces. It has an index of 1.494 (±0.002), shows very little devitrification except at its 
contacts, and contains small skeleton crystals of sanidine. 

Approximately 10 percent of the rock is phenocrysts (2 mm and less in length), of 
which quartz, sanidine, and granophyric intergrowths 
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Figure 16 

UPPER TERMINATION OF A GREEN VITROPHYRE DIKE IN ANDESITE, A QUARTER 
OF A MILE WEST OF EMORY PASS IN A ROAD CUT. WIDTH OF DIKE AT BASE OF 

OUTCROP IS 6 FEET. 
 
 
of these two minerals are the most abundant. These phenocrysts are rounded and very 
intimately embayed by the groundmass (see fig 18), although skeleton-crystal growths 
and subhedral crystals are common (see figs 19-20). Acidic plagioclase, with an 
estimated composition of An6 (based only on high-temperature optics, utilizing data of 
Tuttle and Bowen, 1950), biotite, and sphene are rare, and one magnetite grain was 
observed. The biotite is pleochroic from brown to colorless and shows no trace of 
oxidation to red. 

The granophyric intergrowths vary from cuneiform to irregular globules or 
myrmekitelike masses. The corrosion pattern of quartz or sanidine phenocrysts displays a 
remarkable similarity to some of the granophyric intergrowths (see fig 22). Of all the 
granophyric grains (25) measured on the universal stage, there is no recognizable 
systematic relationship between the optic axis of the quartz and the cleavage planes of the 
sanidine. The quartz-sanidine contacts of cuneiform or very fine myrmekitelike 
intergrowths are completely clear. In contrast, the quartz-sanidine contacts of the irregular 
globular and coarser 
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Figure 17 

LENS-SHAPED GREEN VITROPHYRE ENCLOSED BY STONY RHYOLITE DIKE (COL- 
ORED BLACK IN SKETCH) IN ANDESITIC TUFF. DIKE WIDTH IS ABOUT 6 FEET. 

ROAD CUT ABOUT HALF A MILE WEST OF EMORY PASS. 

myrmekitelike intergrowths contain traces of a dusty material, which resembles the part of 
the glassy matrix where crystallites have formed. A main core of quartz, sanidine, or 
plagioclase may be present (see fig 21). The material comprising the core, with the 
exception of plagioclase, has the same orientation as the corresponding material in the 
granophyric overgrowth. The material which does not form the core has, in most cases, a 
common optical orientation only over limited parts of the granophyric intergrowths; 
therefore, one mineral phase of most intergrowths may be divided into three or four 
separate grains on the basis of optical discontinuity. Some of the coarser intergrowths 
enclose a rounded or corroded plagioclase grain. In addition to single granophyric grains, 
aggregates of several grains are common. The contacts of the grains comprising the 
aggregates are irregular, although where the individual grain extends into the groundmass 
it may be almost euhedral. Where individual granophyric grains of an aggregate have 
central nuclei, and each nucleus is composed of a single mineral 



 
Figure 18 (left). CORRODED GRANOPHYRIC GRAIN (A) AND CORRODED QUARTZ CRYSTAL (B) IN A GLASS MATRIX. CORROSION 
EMBAYMENTS IN QUARTZ ARE PARTLY FILLED WITH SANIDINE (C). 

Figure 19 (right). PHENOCRYST AGGREGATE IN GLASS MATRIX. NOTE SKELETON GROWTH ON SANIDINE CRYSTALS AND FRINGE-LIKE 
OVERGROWTHS OF SANIDINE ON QUARTZ. 

DIAMETER OF FIELD IS 3 MM. 



 
Figure 20 (left). INTERGROWTH OF TWO SUBHEDRAL GRANOPHYRIC GRAINS IN A GLASS MATRIX. 

Figure 21 (right). PLAGIOCLASE CORE WITH SANIDINE OVERGROWTH SURROUNDED BY GRANOPHYRIC OVERGROWTH IN A GLASS 
MATRIX. NOTE CLEAR EUHEDRAL SANIDINE CRYSTALS. 

DIAMETER OF FIELD IS 3.5 MM. 
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Figure 22 

CORRODED QUARTZ PHENOCRYSTS PARTLY FILLED WITH SANIDINE OVER- 
GROWTHS IN A GLASS MATRIX. 

DIAMETER OF FIELD IS 4 MM. 

phase and separated by two distinct micrographic intergrowths, the grains appear to have 
grown toward each other until they were in contact. 

Skeletal crystal growths of sanidine on large sanidine phenocrysts are common. The 
quartz commonly has secondary overgrowths, not in optical continuity, of a mineral 
believed to be sanidine. The over-growths are very fine-grained, spherulitic in 
appearance, uniaxial negative or biaxial negative with a small 2V, with an index less than 
quartz, greater than that of the matrix, and approximately equal to sanidine, and with an 
interference color of first-order gray. 

On the basis of the above data the following conclusions are drawn concerning the 
green vitrophyric dikes: 

1. The rounded phenocrysts indicate a period of corrosion and resolution. Inasmuch 
as most crystallized silicates are denser than the corresponding liquids, and as the 
crystallization process is generally exothermic, the decreased pressure on the igneous 
melt following in- 
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trusion into a higher level of the earth's crust would (in accordance with the Clausius-
Clapeyron equation; see MacDougall, 1947, p 119) produce a resorption without an 
increase in temperature. 

2. Because a conspicuous number of the fractures are parallel to the contacts of the 
green vitrophyres, and because the surrounding rocks show no excessive fracturing, 
these fractures are interpreted as cracks developed during cooling. The loci of the 
fractures parallel to the contacts may be due to a residual weakness caused by a shearing 
between various flow layers during intrusion. In a crystalline rock, slight compositional 
differences may produce a flow layering (Balk, 1948, pp 48-49). In a glass, slight 
compositional variations do not change the properties sufficiently to show flow layers, 
unless many inclusions are present or devitrification is considerable. 

3. The phenocrysts in the glass are the result of a primary crystallization from the 
magma now represented by the glass. In spite of the corroded phenocrysts, the skeleton 
crystals and skeleton-crystal over-growths establish this. Also, the absence of any 
minerals which crystallize at higher temperatures eliminates the possibility that the 
phenocrysts are xenoliths which the glass incorporated from the rocks through which it 
passed. 

4. There is a strong tendency for isolated phenocrysts suspended in a solution to 
adhere to one another when they come into contact, even in a melt with approximately 
10 percent phenocrysts, as in the green vitrophyric dikes. In the other rhyolitic rocks of 
this region, where the phenocryst percentage is greater, this tendency is even more 
marked. The failure of many igneous rocks to show idealized crystallization sequences 
may be due to the aggregation tendency even in the early stages of crystallization. 

Recent studies of plutonic rocks have included the origin of granophyric 
intergrowths. Primary crystallization from a melt, with or without a eutectic, or 
secondary crystallization by means of metasomatism, hydrothermal solutions, or related 
processes, are the two groups of hypotheses currently proposed. An excellent summary 
of the literature and various hypotheses on this subject is included in Drescher-Kaden's 
(1948) monograph, to which the reader is referred. In view of current interest it is 
proposed to discuss the previously described occurrence of granophyric texture in some 
detail. 

The only other reported occurrence of granophyric phenocrysts in a glassy matrix is 
found in the African rift valleys, (N. L. Bowen, personal communication). Similar 
phenocrysts have been found, however, in lava flows (Iddings, 1899; cf pls LII and LIV). 
The crystallization of granophyric intergrowths in the vitrophyre may be a eutectic 
process. The estimated silica range of the glass, based on the refractive index (George, 
1924, p 265), is not too dissimilar from the silica range of the silica-potash feldspar 
cotectic in the system NaAlSiO4-KAlSiO4-SiO2 (Schairer, 1950). Evidence that this is not 
a eutectic crystallization is the fact that no skeletal crystals or overgrowths of quartz are 
found in the thinsections, whereas sanidine overgrowths and skeleton crystals are 
common. 
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The two varieties of mineral contacts described above must also be considered. The 
similarity of the corroded and embayed quartz phenocrysts partly filled with sanidine to 
the coarser granophyric inter-growths whose contacts are marked, by included 
groundmass is very apparent (see figs 18, 19, and 22). Finally, the tendency of the 
phenocrysts to form grain aggregates may be significant. 

A coherent picture of this crystallization can be formulated if one assumes that a 
natural silicate melt deviates slightly from homogeneity. This deviation is of the same 
order of magnitude as the equilibrium distribution of material in a polycomponent 
solution in a thin tube under the influence of a gravitational field. The picture is as 
follows: 

1. The average composition of the melt is that of a eutectic or almost eutectic 
mixture. 

2. Localized volumes of the melt deviate slightly from the average composition. 
3. Quartz, sanidine, and granophyric intergrowths of the cuneiform or fine 

myrmekitelike varieties crystallize in different parts of the melt as a result of the slight 
compositional variations. 

4. The melt then moves to a locality of lower pressure, presumably nearer the 
earth's surface. 

5. The lowered pressure causes the phenocrysts to be corroded. 
6. The movement of the melt improves its homogeneity, and now the composition 

in the examined section lies slightly on the potash-feldspar side of the cotectic line. 
7. Crystallization of sanidine follows, preferentially occurring about some 

previously existing crystal, so that most of the corroded and embayed quartz crystals are 
re-formed into granophyric intergrowths. 

8. Quenching and the formation of crystallites are the concluding steps. 

The foregoing sequence appears to be consistent with all the facts. It indicates that 
two periods of granophyric growth occurred, and presumably, if crystallization had 
continued, a third period would also have occurred, when the composition of the melt 
again reached eutectic proportions. The explanation does not involve any very intricate 
conditions and probably this process is not unique. 

XENOLITH ZONES 

These map units are found in the west-central part of the area, primarily in several 
narrow north-south elongated belts (see pl 1). The size and abundance of the xenoliths 
assume such tremendous proportions that their distribution may be of significance (see 
fig 23). As all the tuffaceous rhyolite has numerous xenoliths, the mapped boundaries of 
this zone are somewhat arbitrary. Lines along which xenoliths cease to be the dominant 
feature were determined with as much care as possible, and, therefore, it is believed that 
the general distribution of the xenolithic facies is correctly mapped. 

The various rocks comprising the xenoliths are, in order of decreas- 
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Figure 23 
ANDESITIC XENOLITH ENCLOSED BY A STONY RHYOLITE RIM (LIGHT-COLORED) 

AND PARTLY ENCLOSED BY A BLACK RHYOLITE VITROPHYRE. XENOLITH IS 8 
FEET LONG. ROAD CUT IN XENOLITH ZONE. 

ing abundance: (1) volcanic rocks of the early andesite sequence, (2) red shale and 
sandstone of the Abo formation, (3) limestone resembling the Magdalena formation, and 
(4) blocks of limestone and black fissile shale (one locality only), which resemble the 
base of the Lake Valley limestone and the Percha black shale, respectively. The early 
andesite volcanics comprise approximately 90 percent of the xenoliths. 

The average diameter of the xenoliths is estimated to be 10-20 feet. Large single 
exposures of foreign rock approach, however, a maxi-mum length of 80 feet or more. In 
fact, the size and continuity of some of the early andesite xenoliths is great enough, so 
that they cannot be shown definitely to be xenoliths and, as a result, the contact between 
the tuffaceous rhyolite and the early andesite volcanic rocks is interpreted as occurring 
near the surface in this area (see cross-section, pl 1). The shape of the xenoliths varies 
from angular to round, and well-rounded xenoliths are quite common. 

The smaller xenoliths are contained in a tuffaceous rhyolite matrix; the larger 
ones, in addition, are intimately interpenetrated by 
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veins and dikes of tuffaceous rhyolite. Both megascopically and microscopically the 
tuffaceous rhyolite of the xenolith zone is practically identical with the tuffaceous rhyolite 
previously described. It differs chiefly in containing only brown biotite (in thinsection) 
and possibly slightly more glass in the matrix. 

The tuffaceous rhyolite in this area has the same two planar structural elements as 
were described previously for the normal part of the tuffaceous rhyolite. In the xenolith 
zone, planar structures of the tuffaceous rhyolite have a random orientation (see p11), as 
do the few bed-ding planes that are measurable in the xenoliths. The planar and linear 
structures of the tuffaceous rhyolite bend around the enclosed xenoliths and range 
considerably in their orientation even within a single outcrop. No evidence of a 
connection between the irregular structures and faulting was found. As these structures do 
not have any discernible relationship to possible compactional forces modified by 
faulting, and as the planar structures of the xenolith zone resemble closely those of the 
remaining tuffaceous rhyolite, it may be concluded that a large part of the structures in the 
tuffaceous rhyolite is the result of flow. 

In the xenolith zone, there are abundant thin veins, dikes, and larger irregular 
masses (40 feet and less is the maximum dimension) of a black rhyolite vitrophyre (see 
fig. 23). The chemical composition, norm, and mode of a rhyolite vitrophyre specimen, 
carefully selected, may be compared with that of a xenolith and the crystalline tuffaceous 
rhyolite in Table 6 (columns V2, L2, and R2). The megascopic and microscopic texture is 
identical with that of the tuffaceous rhyolite, with respect to the phenocrysts which the 
rock contains. Many of the vitrophyre-crystalline rhyolite contacts are marked by a 
lighter-colored zone (18 inches and less thick) of crystalline tuffaceous rhyolite. The 
lenticular planar structures in the lighter-colored zone and in the nearby darker tuffaceous 
rhyolite are parallel to the contact, although some of the thinner vitrophyre dikes truncate 
the structure of the surrounding tuffaceous rhyolite. Abundant xenoliths, primarily of the 
early andesite volcanic sequence, are completely or partly enclosed by massive 
vitrophyre. This aspect will be discussed in some detail in the following section. 

In places, the vitrophyre is devitrified, especially along fractures. Thin light-colored 
veins of devitrified rock penetrate black vitrophyres, both of which have similar 
phenocrysts and textures. Large spheroidal masses (2 to 3 feet in diameter) of rhyolite 
vitrophyre appear to be enclosed by the tuffaceous rhyolite as xenoliths. Smaller xenoliths 
of layered black vitrophyre have a eutaxitic structure parallel to that of the enclosing 
tuffaceous rhyolite. 

The following conclusions are drawn on the basis of the foregoing summary: 

1. The great concentration of xenoliths, the lack of sorting, and the wide variation in 
the amount of enclosing material make it probable that the rocks of these zones do not 
represent an airborne pyroclastic deposit. 



TABLE 6. ANALYSES, NORMS, AND MODES OF IGNEOUS 
ROCKS OF THE KINGSTON REGION, NEW MEXICO 

 
a Analyst, H. B. Wiik, Helsinki, Finland. 



TABLE 6 (continued). 

 
x Indicates present. 
b Normative pyroxene calculated in the manner suggested by Barth (1931). 
c Includes possible tridymite and cristobalite. 



TABLE 6 (continued). 

 
x Indicates present. 
d The rock fragments have approximately the same mineral composition as NL2 and L2. Therefore, in these specimens they have not been counted 

separately. 
e See text for mineral properties which have tentatively been interpreted as zeolites. 



TABLE 6 (continued). 
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2. The contemporaneity of the xenolith zones and the entire tuffaceous rhyolite is 
established by the contacts and petrographic similarity. 

3. This deposit was formed essentially in place and might be called a vent 
agglomerate zone. Occurrence within a volcanic rock, distribution parallel to the north-
south regional structure, and petrologic similarity to the tuffaceous rhyolite, all lead to 
this interpretation. Barth (1950) has described similar fissure zones in the volcanic rocks 
of Iceland, which periodically were reopened by rupturing and so allowed lava to 
escape. Here the concentration of xenoliths is so high that it does not appear likely that 
this zone was a major escape route for the rhyolitic volcanics found in the region. An 
alternate possibility is that the xenolith zone represents the basal phase of the tuffaceous 
rhyolite, including debris from the surface over which it flowed. Such large amounts of 
possible surface debris are absent in other localities where the base of the tuffaceous 
rhyolite is well exposed. This means that local concentrations of possible surface debris 
would suggest proximity to an orifice or a fissure zone from which igneous material was 
extruded. 

ENDOMORPHIC EFFECTS OF XENOLITHS IN VOLCANIC GLASS 

Xenoliths of quartz latite tuff (from the pyroclastic facies of the early andesite 
volcanic sequence) are. very abundant in the rhyolite vitrophyres of the xenolith zone. 
Their size ranges from a maximum diameter of 20 feet to a small fraction of an inch, 
and many xenoliths are enclosed in a thin shell of crystalline tuffaceous rhyolite roughly 
concentric about the xenolith (see fig 23). 

The shell of crystalline tuffaceous rhyolite (henceforth called the crystalline rim, 
or simply rim) appears identical with the massive tuffaceous rhyolite described above. 
The rim even shows the irregular lighter-colored lenticular patches of groundmass 
which constitute the planar structure. This planar structure is parallel to the xenolith 
contact. The massive rhyolite vitrophyre has approximately the same sizes and varieties 
of phenocrysts as has the crystalline rim. In the outcrop the quartz latite tuff xenoliths do 
not differ markedly from the quartz latite described above under the heading "Andesite, 
latite, and their quartzose equivalents," except that their color may be a slightly brighter 
shade of red. 

Microscopic study showed that the crystalline rim and the enclosing vitrophyre 
have the same texture and composition with respect to the phenocrysts as the tuffaceous 
rhyolite described above (figs 24-25). However, none of the biotite has been oxidized to 
a red color. The matrix of the vitrophyre is a very pale-brown glass with an index of 
1.497 (±0.002). It shows no devitrification, except very slightly along a few cracks. 
Locally a eutaxitic structure occurs. The vitrophyre groundmass contains a noticeable 
amount of small broken fragments of the phenocrysts, and in some lenses this 
approaches a rock flour or gouge in its fineness. The matrix of the rim is 
cryptocrystalline, with an overall index of refraction less than that of balsam, and is 
clouded with oxides of iron. The rim has radial or spherulitic finely intergrown 



Figure 24 (left). CRYSTALLINE RHYOLITE RIM. 
Figure 25 (right). BLACK RHYOLITE VITROPHYRE; MATRIX IS UNALTERED GLASS AND FINE ROCK FLOUR. 

DIAMETER OF FIELD IS 3 MM 
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fibers which locally radiate outward from small broken crystal fragments, slightly larger 
anhedral quartz grains, and very fine dendrite-shaped intergrown masses. 

Petrographically xenoliths of quartz latite tuff differ only slightly from the 
previously described quartz latite. The groundmass of the tuff xenoliths is more opaque 
and contains some small secondary spheroidal masses, which consist of an anhedral 
quartz shell enclosing quartz, quartz and sericite, or quartz and zeolites. Quartz also 
occurs in several thin veins, with which is associated a brown to colorless, uncorroded, 
unaltered biotite. The fresh appearance of this biotite is in marked contrast with the 
corroded and bleached sparse biotite grains found throughout these pyroclastic rocks. 
Sericite is a common constituent of the tuff xenoliths and occurs chiefly as small grains 
in the matrix. The sericite also forms radial fibrous aggregates, which are pseudo-
morphous after a mineral with a square (or nearly so) cross-section. The chemical 
analyses, norms, and modes of these rocks are listed in Table 6.  

It is obvious from the field observations that the size of the crystal-line rim is 
proportional to the size of the xenolith. It was believed, however, that a more exact idea 
as to the nature of the proportionality would be valuable. In order to measure the size 
relations of the xenoliths and crystalline rims, it was necessary to make the following 
simplifying assumptions: 

1. An areal measurement would be directly proportional to the volume of the 
xenolith. 

2. The shape of all the xenoliths is very similar; differences are random and minor 
in degree. Actually, this assumption appears valid. Most of the xenoliths, especially the 
larger ones, show a moderate rounding. The small xenoliths are more angular, but 
because they are also much more abundant, the larger number of obtainable measure-
ments should compensate for this difference in shape, if the variation is random. 

3. The cross-sectional shape of the xenoliths falls between that of an ellipse and a 
rectangle. This also is true as a reasonable first approximation. 

On this basis the area may be computed easily by measuring the major axis of the 
xenolith and by measuring the minor axis approximately bisecting the major one, and at a 
right angle to it. Then the area of the xenolith is K(ab), where a is the major semiaxis of 
the xenolith, b the minor semiaxis, and K is a proportionality constant, which, according 
to the assumptions, is very nearly the same for all the xenoliths and has a value between 
,r and 4. Accordingly, a plot of the rim thickness, denoted by r, versus the xenolith size 
factor (ab) will give a measure of the variation of the size of the xenoliths with the size of 
the crystalline rims, since K is assumed constant. 

The original measurements are listed in Table 7 and illustrated graphically in Figure 
26, where they have been plotted on a logarithmic 
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scale. The straight line (fig 26) was calculated by the method of least mean squares, and 
has the equation: 

log (r) = -0.4009 + 0.4240 log (ab) 

The correlation coefficient is 0.97, which has a high significance level. The logarithmic 
scale was used for convenience in illustrating the measurements on a single graph, and 
because any deviations from linearity would not involve computations of a second-degree 
equation. In addition, the few large measurements would not so completely domi- 

 
Figure 26. VARIATION OF THE CRYSTALLINE RIM THICKNESS WITH THE 

XENOLITH SIZE. CIRCLED DOTS INDICATE TWO NEARLY IDENTICAL 
MEASUREMENTS. SEE TEXT. 

nate the determination of the line of best fit. The correlation coefficient on an arithmetic 
scale is 0.86, still of high significance; however, the straight line of best fit almost 
completely ignores the larger numerical measurements. The error in the ratio of the size 
of the crystalline rim to the size of the xenolith, owing to the fact that the measured cross-
section is not a principal cross-section, is such that the size of the crystal-line rim will be 
larger per size of xenolith than it should be, and the slope of the line of best fit will be 
greater than the true slope. The true relationship, however, may be given by an 
exponential function of some variety, since this is commonly found to be the case in 
chemical reactions and in growth processes. Here it is concluded merely that the rim 
thickness is a function of the xenolith size, and that the rim and xenolith are genetically 
related. 

Analyses V2, R2, L2, and NL2, listed in Table 6, were made in order to ascertain 
what chemical changes occurred during the crystallization of the matrix of the rim. 
Analyses V2, R2, and L2 are each composites of three. specimens taken radially outward 
from the same 
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xenolith (see table 6) at a distance of 3 feet from the rim, at the rim, and at a distance 
approximately 3 inches inside the xenolith-rim con-tact. Analysis NL2 represents a 
composite of many specimens taken at the localities listed in Table 6, and has been called 
the "normal" quartz latite. It is poor procedure to consider the differences between the 
xenolith and the "normal" quartz latite when there is no measure of the standard 
deviation of the latter. Therefore, it is emphasized that the comparison of the xenolith and 
"normal" quartz latite is given only as a crude first approximation. Now that the 
differences in composition have been established, contemplated future sampling will 
remove this objection. Actually, analysis of a quartz latite flow (number 389-A-236 in 
table 6) suggests that analysis NL2 approaches closely the normal quartz latite. 

These changes can be better understood if the analyses are re-calculated in terms of 
the standard rock cell as defined by Barth (1948), which assumes that the oxygen is 
constant, so that one may compare changes in the relative molecular amounts of the 
positive cations with reference to a standard oxygen concentration. This recalculation for 
the major constituents is presented in Table 8, which also lists the differences between 
the amounts of the various metallic elements in 
 
 

TABLE 7. SIZE MEASUREMENTS * ON XENOLITHS 
AND CRYSTALLINE RIMS 

r a b r a b 

2.0 7.75 7.12 .12 .59 .19 
.5 1.75 1.0 .12 .53 .38 
.09 .34 .25 .19 .88 .75 
.12 .25 .19 0.5 1.12 .69 
.25 .69 .5 .25 1.12 .50 
.19 .38 .25 .25 .56 .31 
.12 .62 .5 .75 1.09 1.06 
.19 .41 .25 .12 .59 .25 
.12 .41 .28 .38 1.56 .69 
.88 1.62 .88 .31 1.12 .62 
.12 .69 .38 .38 .62 .44 
.19 .69 .44 .25 .62 .56 
.06 .31 .19 .19 .56 .38 
.19 .44 .38 .19 .53 .50 
.75 2.50 1.25 .50 1.81 1.62 
.75 1.62 1.25 .38 1.31 .62 
.31 .44 .38 .56 2.12 2.0 
.31 .56 .25 .31 .69 .38 
.25 1.25 .56 6.5 16.5 10.5 
.38 .88 .81 11.0 45.0 28.0 
.88 2.12 1.12 8.0 40.0 25.0 
.38 1.12 .75 16.0 138.0 30.0 
.19 .56 .44 11.0 90.0 60.0 
.50 1.12 1.0 7.0 22.0 16.5 
.38 .75 .62 10.0 60.0 42.0 
.19 1.0 .69 .09 .28 .19 

* The measurements were made in inches and fractions of an inch, and were rounded off to 
two decimal places for the tabulation. The thickness of the crystalline rim is r, and the major and 
minor semiaxes of the xenolith are a and b, respectively. 



TABLE 8. COMPOSITIONAL DIFFERENCES BETWEEN THE 
VITROPHYRE, RIM, XENOLITH, AND "NORMAL" QUARTZ LATITE* 

       "NORMAL"

 
VITROPHYRE 

 

 
RIM 

 
XENOLITH 

  

      

    

QUARTZ
LATITE 

ELEMENT (V2) (R2)-(V2) (R2) (R2)-(L2) (L2) (L2)-(NL2) (NL2)

Si 60.24 +2.88 63.12 +6.75 56.37 +4.32 52.05
Ti   .26 -0.05 .21 -0.33 .54      - .09 .63 
Al 13.12 -1.35 11.77 -2.04 13.81    + .27 13.54
Fe 1.60 -0.09 1.51 -2.00 3.51      - .46 3.97 
Mg  .88 -0.10 .78 -1.92 2.70    + .32 2.38
Ca        

      

1.91 -0.61 1.30 -1.88 3.18 -2.00 5.18
Na 6.61 -2.03 4.58 +0.21 4.37 -1.87 6.24
K 3.93 +1.69 5.62 +1.95 3.67 +0.71 2.96 

* Calculated according to the standard rock cell (Barth, 1948). See text for discussion of "normal" quartz latite. 
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related rocks. In Table 9, the various elements are arranged in order of their increasing 
abundance in the rim relative to surrounding rocks, and in the xenolith relative to the 
"normal" quartz latite. The figures should not be regarded in terms of the absolute values, 
but only with respect to the direction of compositional differences and the order of 
arrangement of the elements. 

It is apparent from Tables 8 and 9 that the rim has been enriched in potash and 
silica relative to its surroundings, whereas the remaining materials have been decreased 
relatively. Calcium, titanium, magnesium, aluminum, and iron show a consistent decrease 
in comparison with the rim surroundings, whereas sodium has increased in the rim 
relative to the xenolith and decreased relative to the vitrophyre. When the rim is 
compared with its surroundings (table 9), the magnesium is lower than the iron, and 
aluminum is lower than silicon. It is interesting to note that, with one exception (i.e., 
magnesium greater than iron), the same relative order of compositional differences is 
manifest when the xenolith and "normal" quartz latite are compared (table 9). 

Spectrometric analyses, kindly made by Mr. O. Joensuu, of the matrices of the rim 
and the vitrophyre (table 10) show that the differences in the soda-potash ratios of the 
matrices are of the same magnitude as the differences in the soda-potash ratios of the 
vitrophyre and the rim, considering the entire rocks. Owing to the fractured and broken 
phenocrysts and fine rock flour, the separation of phenocrysts from matrix cannot be 
regarded as complete, and therefore the data are of value only in indicating the order of 
magnitude. 

Single-crystal X-ray photographs (utilizing iron radiation with a manganese filter) 
of the sanidine phenocrysts in the vitrophyre and the crystalline rim were taken by Dr. 
Fritz Laves and the author. This study showed that the sanidine phenocrysts in both rocks 
consist of sub- 

TABLE 9. DIRECTION AND RELATIVE MAGNITUDE OF 
THE COMPOSITIONAL DIFFERENCES BETWEEN THE RIM 

AND ITS SURROUNDINGS, AND BETWEEN THE XENOLITH 
AND "NORMAL" QUARTZ LATITE* 

ELEMENT (R2) — (V2) ELEMENT (R2) — (L2) ELEMENT (L2) — (NL2)
 (V2)  (L2)  (NL2) 

Ca —.319 Mg —.712 Ca —.386 
Na —.307 Ti —.610 Na —.299 
Ti —.192 Ca —.592 Ti —.142 
Mg —.113 Fe —.570 Fe —.115 
Al —.102 Al —.148 Al +.019 
Fe —.056 Na +.048 Si +.082 
Si +.048 Si +.119 Mg +.134 
K +.430 K +.531 K +.239 

* The headings in the second, fourth, and sixth columns refer to the column headings in Table 
8. The direction of the differences between the various analyses is given by the sign. A minus sign 
indicates a decrease in the rim relative to its surroundings, or, in the fifth and sixth columns, a 
decrease in the xenolith relative to the so-called "normal" quartz latite; a plus sign indicates the 
opposite. The elements are arranged in order of magnitude. 
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microscopically unmixed orthoclase and high-albite. The sanidine of the vitrophyre has 
been unmixed to a greater degree, so that the highalbite parts have a much more 
pronounced triclinicity. After heating 15 minutes at a temperature of 855°C, the sanidine 
phenocrysts from both vitrophyre and rim became homogeneous. Both heated sanidines 
have the same composition Or71Ab29 (all sanidine compositions in this report are in mole 
percent, ± 5 percent). 

X-ray powder diagrams of heated sanidine phenocrysts also indicated 
approximately the same composition (see table 11), utilizing the data of Bowen and 
Tuttle (1950), and Osten (1951). A powder diagram of unheated sanidine phenocrysts 
shows (table 11) that the composition based on Bowen and Tuttle's (1950) work differs 
from that determined with the use of Osten's (1951) data. Since Bowen and Tuttle used 
pure synthetic minerals which were probably not unmixed, this is not surprising. Osten 
used natunil minerals which were probably unmixed, and correlated X-ray data with 
chemical analyses. In a natural mineral the (201) spacings (used by Bowen and Tuttle) of 
both unmixed phases might not be detected in a powder diagram. 

Quartz, potassic sanidine, and sodic sanidine are believed to form the rim matrix on 
the basis of the X-ray data (table 11). It should be noted that the 4.166 or 4.180 spacing of 
the potash sanidine does not become apparent until after heating, suggesting that two 
sanidines were made homogeneous. This is not surprising, as the adjacent quartz lines 
could easily obscure the 201 lines of a very potassic sanidine. As the 201 spacing (4.047 
and 4.054, within the limits of error) does not disappear after 15 minutes at 855°C, it is 
possible that the potassic and sodic sanidine did not become completely homogeneous 
and are present, therefore, in the matrix as separate grains rather than cryptoperthites. 
However, it is also possible that these lines (4.047 and 4.054) were caused by a mineral 
other than feldspar. One X-ray picture of the matrix material which had been heated for 
about 24 hours at 900°C was made, in which the powder rod was not allowed to rotate. 
The uniform, easily measured lines, except for some darker quartz spots, attest to the 
exceedingly fine-grained nature of the rim matrix. The composition average (table 11) of 
the homogeneous sanidine in the matrix is identical with that of the sanidine phenocrysts. 
The fact that neither tridymite nor cristobalite was detected, and the possibility that 

TABLE 10. SODA-POTASH CONTENT OF THE 
MATRICES OF THE RHYOLITE VITROPHYRE 

AND THE CRYSTALLINE RIM* 

 WEIGHT PERCENT  

OXIDE VITROPHYRE- (V2) RIM- (R2) 

Na5O 
  K2O 

   3.7±.2 
          4.0±.2 

2.75±.2 
5.0  ±.2 

* Spectrometric analysis by O. Joensuu, Dept. of Geology, University of Chicago. 
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TABLE 11. X-RAY DATA ON THE SANIDINE PHENOCRYSTS 
AND THE MATRIX IN THE CRYSTALLINE RIM 

 
a Only spacings of feldspar which were used to determine molecular composition and adjacent 

quartz lines are presented. 
b Data indicating the variation of lattice spacings with chemical composition for the alkali 

feldspars have been taken from Bowen and Tuttle (1950), indicated by B, and Osten (1951), 
indicated by O. Osten's data give the Ab percent of the total Or + Ab + An content. 

the potassic and sodic sanidine may form separate grains rather than cryptoperthites, 
suggest a low crystallization temperature. 

Geologic literature contains some evidence that glasses have a much more limited 
composition than do the corresponding crystalline rocks. This is especially conspicuous if 
a comparison is made with plutonic rocks (Bowen, 1928, figs 38-39). A comparison of 34 
rhyolites and 19 rhyolitic glasses from Johannsen (1932) shows that no glasses have a 
soda-potash ratio (weight percent) less than 0.47, whereas 14 crystal- 
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line rhyolites do. Analyses of 33 glasses which George (1924) has studied show a 
minimum soda-potash ratio of 0.53, and, for most glasses, the ratio is greater than 0.9. R. 
D. Terzaghi (1935) has compared four volcanic glasses and the devitrified rocks which 
are supposedly their equivalents. She finds that in the process of devitrification the potash 
content is increased, whereas the soda content decreases, and concludes, "Devitrification 
and alteration involving replacement or selective leaching or both, are two closely related 
processes." The above authors obtained most of their data from Washington's tables of 
chemical analyses, and there may be some duplication involved. However, there is a gen-
eral indication that rhyolitic glasses are higher in soda and lower in potash than the 
corresponding crystalline rocks. 

Comparison of the analyses of the Magdalena perlite (in Socorro County, New 
Mexico), and the associated rhyolite and devitrified perlite, strengthens the suggestion 
that the soda-potash ratio (weight percent) in rhyolitic glasses is higher than that of the 
corresponding crystalline rocks (data from Dr. R. H. Weber, personal communication). 

There should be soda rhyolites, of course, which are higher in soda content than 
their corresponding glasses. Unfortunately this cannot be checked by a review of tables of 
analyses, unless geologic conditions are known. In other words, high-soda glasses and 
rhyolites are well within the compositional limits of igneous rocks, and, therefore, 
variation of the soda-potash ratio during devitrification could not be studied by a review 
of analyses, but would require special sampling with this purpose in mind. 

Fenner (1936, 1934) has shown that the hot-spring waters of Yellowstone Park 
have replaced soda and lime by potash and silica. This process has occurred in the 
crystalline lavas and with the devitrification of some glasses. On the other hand, Barth 
(1950) has demonstrated that replacement by the acid hot-spring waters of Iceland 
produces only an enrichment in Si and H, whereas leaching by the acid hot-spring waters 
produces an enrichment in Al, Fe, and K. 

The first problem to be considered in detail is the origin of the crystalline rims. It is 
known that rapid cooling, suggested by the presence of the vitrophyre, is not conducive to 
crystallization. Are the rims the result of a primary crystallization, or of some secondary 
process similar to alteration? In this connection the following hypotheses are to be 
considered: 

I. The rims originated during a crystallization which predates the present 
occurrence of the xenoliths and vitrophyres. 

2. The xenolith acted as a seed crystal. 
3. Leaching, hydrothermal replacement, or alteration of the vitrophyre produced 

the rims. 
4. Volatiles lost by the xenolith caused crystallization of the rim. 
5. The xenoliths reacted with the more acidic melt according to the reaction 

principle (Bowen, 1928). 

The first two hypotheses may be discarded summarily. The con-centric and 
conformable rims around the xenoliths eliminate a previous 
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crystallization. Abundant phenocrysts in both the rim and vitrophyre prove that seed 
crystals did not determine crystallization. 

Fresh primary minerals of the rim, which may be observed in hand specimen and 
thinsection, and identified by x-ray study, are not compatible with an origin by leaching, 
hydrothermal replacement, or alteration. It seems likely that such secondary processes in 
a near-surface volcanic rock of this nature would produce an abundance of the common 
alteration minerals. There are some fractures in the vitrophyric masses along which 
devitrification has proceeded, probably by leaching. These devitrified rocks, insofar as 
they have been examined, are very friable. In addition, all alteration seen in thinsections 
of the rocks of this region has resulted in an enrichment in calcite. Loss of calcium in the 
rim, relative to the rim surroundings, is clearly demonstrated in Tables 8 and 9. Finally, 
the demonstrated relationship between the sizes of the xenoliths and the crystalline rims 
precludes a postquenching generating process. 

All rocks have a certain pore space which may be filled with meteoric water. If a 
rock containing interstitial water were to become incorporated in an igneous melt, the 
heat of the melt would cause the water to expand, so that a part of the connate water 
might be driven out into the surrounding liquid. This escaped water and other volatiles 
would act as a flux and reduce the viscosity of the surrounding melt, thus promoting its 
crystallization. Several geologists have offered this hypothesis as one explanation of the 
coarser-grained rims surrounding some igneous inclusions. In the xenoliths here 
described, such an expansion of volatiles would have had a cooling effect, but it is 
evident by the presence of the glass that cooling was already exceedingly rapid. Also, if 
devitrification is a simple process involving a thin zone of reduced viscosity surrounding 
a xenolith, then there is no reason why the rocks should differ chemically (table 8). 
However, this hypothesis can-not be completely eliminated. 

According to Bowen (1928, pp 185-191) an acidic melt should react with a more 
basic inclusion, precipitating material which is, in equilibrium with the melt. 
Furthermore, this reaction is exothermic and, therefore, would tend to occur during a 
period of cooling. Because natural silicate melts in general crystallize incongruently, 
there should also be a difference in the composition of the melt and the crystals, or 
between the vitrophyre and the rim. The changes in the xenolith as a result of the reaction 
should be parallel to the differences between the melt and the crystalline material. If the 
"normal" quartz lathe can be compared with any validity, this is found to be so. Plotting 
these rocks in the ternary diagram, quartz-soda feldspar-potash feldspar (Schairer, 1950) 
shows that the liquid phase of a silicate melt of this composition should be precipitating 
silica, which would produce a rim enriched in quartz. Examination of the binary system 
NaAlSi3O8-KA1Si3O8 (Bowen and Tuttle, 1950) shows that a liquid of the vitrophyre's 
composition should precipitate feldspar of a higher potash content. In both cases, the 
rocks exhibit the expected phenomena, if one assumes a crystallization sequence. 

It is concluded; therefore, that the rim is the crystallized equivalent 
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of the glass, and that it crystallized from the natural silicate melt now represented by the 
glass. This, was caused by the operation of the reaction principle, with some possible 
assistance from volatiles escaping from the xenolith. 

In view of the lack of tridymite in the crystalline rim, it would appear that the 
temperature of formation was low. The fact that after a short heat treatment the soda-
potash feldspars in the rim have not become homogeneous suggests that they are not 
cryptoperthitically intergrown. This in turn points toward a low temperature of 
formation, since soda-potash feldspars form a complete solid solution at high tem-
peratures (Bowen and Tuttle, 1950). 

Excluding gaseous transfer, because there is no evidence of vesiculation in the 
glass, diffusion and movement by liquid flow are the two most probable mechanisms by 
means of which material in the melt could have moved to its place of crystallization. 
Since the rims are con-centric and do not have any thicker sides, liquid flow in the melt 
could not have been very large. The viscosity of obsidian, approximately 1012 poises at 
800°C (Birch, et al., 1942), is so great that neither diffusion nor flow could have been 
very rapid. Contemplated refractive index determinations on the glass may decide which 
of these two processes was more operative. 

Tables 8 and 9 show that silicon, and potassium in the rim represent a geochemical 
culmination (defined by Reynolds, 1946, pp 391-392) with respect to the surrounding 
materials. Similarly, the remaining constituents indicate a geochemical depression (also 
defined by Reynolds). Those materials which show a geochemical depression must have 
moved away from the place of crystallization; consequently, adjacent areas may show 
geochemical culmination in these constituents. These rocks indicate that such 
geochemical phenomena can be produced by a lack of equilibrium in an igneous process. 
Recently Corn-wall (1951), Kahma (1951, pp 44-45), and others have shown that such 
culminations or depressions are common in igneous rocks. 

If we assume that the time of quenching was the same for all constituents, then 
Table 9 shows that potassium has a greater proportional enrichment in the rim than 
silicon. From this it would appear that the movement of potassium toward the locus of 
crystallization was faster than that of the silicon. This phenomenon is not unexpected, if 
diffusion has played a significant role in the movement of material, since a large part of 
the silicon might be relatively fixed in highly polymerized silica tetrahedra. 

The rate of movement of material away from the crystallizing rim must have been 
approximately the same as the movement toward the place of crystallization, since there 
is very little change in density during crystallization (see table 6). Assuming that the 
time of quenching was the same for all constituents, then a comparison of the crystalline 
rim with its surroundings (see table 9) shows that magnesium has been lost at a faster 
rate than iron, and that calcium has decreased more rapidly than sodium, which has 
increased in one case. 

Because of the presence of the glass, the assumption of the previous paragraphs 
appears to be justifiable. It should be emphasized that the 
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order and arrangement of the data in Table 9 has value only as a relative qualitative 
estimate of the rates of movement, and then only for rocks of similar PTX conditions. It is 
interesting to note that Kahma (1951, p 70), with considerably more data on the 
compositional variation across a diabase-granite contact (where the basalt is intrusive into 
the granite) states, ". . . the fact that for example the migration ability of K2O in. the upper 
and lower rock systems is considerably greater than that of SiO2 seems to be real and not 
fortuitous." He also concludes that magnesia may migrate a little faster than total iron 
(calculated as FeO). Unfortunately, Kahma submits no migration data for sodium and 
calcium. Considering the fact that Kahma has sampled a diabase-granite contact, the 
agreement with the author's order (table 9) is striking. 

The composition of those mineral phases which may crystallize from the melt, and 
which, therefore, are most stable, is probably the primary factor influencing the relative 
migration rates. The evidence for this is that like atoms (i.e., Ca, Na, K, etc.) do not 
behave in a like manner. Elements of the same order of magnitude of gain or loss cannot 
be divided into three groups (e.g., Ca-Na-K, Fe-Mg, Al-Si) on the basis of similar 
chemical behavior. 

From this one might deduce that numerically accurate values of the migration rates 
cannot be calculated unless one knows to what extent crystallization has resulted in an 
effective separation of the crystal-line phase from the transporting medium of the 
surroundings. That such a separation exists is proven by geochemical culminations (Corn-
wall, 1951; Kahma, 1951; also see their bibliographies). If this were not so, material 
would have to diffuse toward an area of greater concentration, contrary to Fick's law (see 
Barrer, 1941), in a process analogous to the diffusion of heat from a cold source to a 
hotter zone. Barth (1952, pp 318-321) discusses the idea that crystallization may 
effectively separate a constituent from the transporting phase. It should be noted, 
however, that Table 9 shows no major changes in rock composition as a result of this 
crystallization process. 
 
R.ABB CANYON PEGMATITE AREA 

Kelley and Branson (1947) have described this shallow-depth, high-temperature 
pegmatite area which lies about 3 miles north of the mouth of Rabb Canyon (see pl 1), 
beyond the present map limits. The following summary utilizes Kelley and Branson's 
(1947) paper, data gathered by the author on a 1-day trip to the area with N. L. Bowen, 
Eugene Callaghan, V. C. Kelley, and C. Vitaliano, and subsequent laboratory study of the 
samples collected by Dr. Callaghan and the author. The unique feature of this pegmatite is 
the presence of large moonstone sanidine crystals. Many recent articles on high-
temperature feldspars list one sample as "moonstone or sanidine, Grant County, New 
Mexico." All such samples were obtained from this pegmatite area through Ward's 
Natural Science Establishment or other collectors. 

According to Kelley and Branson (1947): 
The pegmatites are small bodies within a rhyolite porphyry plug that has been 

injected into rhyolitic tuffs of Tertiary age. The pegmatites consist 
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dominantly of quartz and sanidine with accessory quantities of cleavelandite, biotite, 
sphene, magnetite, and ilmenite. The sanidine, which occurs in crystals up to one or two 
feet on a side, is the moonstone variety and displays limpid blue and white play of colors. 
Microcline is absent, and on the basis of the sanidine the pegmatites are believed to have 
crystallized at temperatures higher than those of the normal plutonic pegmatites. Textural 
and structural evidence indicates that the pegmatites crystallized prior to the enclosing 
rhyolite porphyry. 

An analysis, norm, and mode (389-B-Cl) of the granitoid phase of the associated 
rhyolite porphyry are given in Table 6 and might well be compared with the average 
mode of the rhyolite porphyry given in Table 5. The texture and composition of the 
Rabb Canyon granitoid (term from Kelley and Branson, 1947, p 702) rhyolite porphyry 
appears to be almost identical with that of the rhyolite porphyry discussed in a previous 
section of this report. The Rabb Canyon rhyolite porphyry has a matrix which is whiter, 
more altered, and more friable than the rhyolite porphyry shown on Plate 1, except for 
the small mass of porphyry just south of the highway and northeast of the words 
"Gallinas Canyon" (on pl 1). Sanidine phenocrysts of the Rabb Canyon rhyolite 
porphyry, all of which are clear and unaltered, have the optic plane normal to (010) and 
a 2V of 20 degrees. Unheated sanidine phenocrysts consist of two phases with the 
compositions Or81Ab19 and nearly pure albite, whereas heated sanidine phenocrysts have 
a composition of Or67Ab33 (± 5 mole percent), on the basis of the 201 lines (Bowen and 
Tuttle, 1950) determined by means of a Phillips X-ray spectrometer according to 
techniques well described in geologic literature. Rounded and corroded plagioclase 
phenocrysts, averaging about 1 mm long, are An26 on the basis of U-stage extinction-
angle Measurements. Cavities within the Rabb Canyon rhyolite porphyry are partly or 
completely filled with several zeolites, tentatively identified as stilbite, heulandite, and 
chabazite. 

Kelley and Branson (1947) have concluded that the pegmatites crystallized prior to 
the enclosing rhyolite porphyry, because thin stringers of porphyry truncate the 
pegmatites and pegmatitic minerals. An exactly opposite conclusion would be reached 
on the basis of the 

 
 

TABLE 12. FELDSPARS OF THE RABB CANYON 
PEGMATITE AREA 
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feldspar compositions (see table 12), inasmuch as the most calcic plagioclase and the 
most potassic sanidine occur in the granitoid rhyolite porphyry. However, temperature 
fluctuation might be able to explain the anomaly that feldspars of slightly higher 
crystallization temperatures occur in those rocks which have presumably crystallized 
last. Actually, there may be no anomaly whatsoever; in the author's opinion one part of 
the rhyolite porphyry could have crystallized before the pegmatite, and another 
afterward. A proper conclusion is that the rhyolite porphyry and pegmatite are 
consanguineous and nearly contemporaneous. Furthermore, there are no fundamental 
differences other than grain size between the rhyolite porphyry, the pegmatite, and the 
tuffaceous rhyolite. Pegmatite minerals (Kelley and Branson, 1947, fig 5) are almost, as 
rounded, corroded, and fractured as those in the tuffaceous rhyolite. 

SUMMARY OF THE RHYOLITIC IGNEOUS ROCKS 
The xenolith zones, pegmatite area, and large areas of intrusive rhyolite porphyry, 

all of which are very similar in texture and composition to the extrusive rhyolitic rocks, 
suggest proximity to a major eruptive center which existed before early Miocene-early 
Pliocene time. The fractured and broken phenocrysts, frequently regarded as indicating a 
pyroclastic origin, are equally common in both the intrusive and extrusive rocks, 
although somewhat less pronounced in the Rabb Canyon pegmatite. Consequently, both 
intrusive and extrusive rhyolitic rocks may have been emplaced, or extruded as 
crystalline, and glassy, granular masses. Features such as pegmatites, xenomorphic-
granular phases (of the rhyolite porphyry), perthitic phenocrysts (in sills), and primary 
granophyric phenocrysts (in glass dikes), all commonly regarded as plutonic rock 
features, are here shown to occur in a volcanic igneous environment. Geochemical 
culminations in silicon and potassium have been produced by a lack of equilibrium 
during the formation of rhyolitic reaction rims about accidental xenoliths. All the 
evidence herein presented tends to invalidate the argument that igneous and plutonic 
processes are fundamentally different. 

The rhyolitic extrusive rocks form extensive blanket deposits, which are little 
altered and less broken up by faulting than the under-lying rocks, so that many potential 
mining areas may be covered as a result. 

SANDSTONE, CONGLOMERATE, AND TUFF 
The exposures of this rock unit form discontinuous lenticular masses in the 

extreme western part of the area (see pl 1). These sediments and pyroclastics overlie the 
tuffaceous rhyolite and underlie the late andesite. With the exception of slight variations 
in dip, their structure is conformable to that of the containing volcanic rocks. On the 
basis of its stratigraphic position, this rock unit is correlated with the lake beds east of 
the mapped area, which are between early Miocene and early Pliocene in age. 
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The thickness of this unit ranges from a feather edge to 300 feet. At the base, in 
most localities, is a cobble conglomerate with well-rounded cobbles and boulders of the 
tuffaceous rhyolite in a coarse-grained, poorly-sorted, friable, arkosic matrix. Above are 
white, medium-grained, friable, tuffaceous siltstones or white rhyolitic tuffs of varying 
thicknesses. The top units are friable, red, sandy to silty arkoses in massive to thin-
bedded units. 

The rock fragments in these sediments, on the basis of the author's field 
examinations, consist exclusively of the tuffaceous rhyolite. This is the most valuable 
criterion for differentiating this rock unit from later Tertiary sediments. In view of the 
approximate structural con-formability of this deposit, the singularity of its rock 
fragments, and the presence of rhyolitic tuffs, it would appear that this. sediment was 
formed shortly after the tuffaceous rhyolite. 

LATE ANDESITE 
 

These flows and agglomerates, comprising the youngest volcanic rocks, are found 
only in a narrow northwest-southeast zone in the extreme western part of the mapped area 
(see pl 1), where they overlie the above-described unit with approximate conformity. In 
some areas, the late andesite is missing; in others, it ranges in thickness up to a possible 
maximum of 800 feet. Southeast of Rabb Canyon, immediately adjacent to State 
Highway 180 near a low saddle, there are abundant rounded cobbles and boulders of the 
late andesite strewn about on the surface, but actual ledges are lacking. These boulders 
suggest that the late andesite extended to the east beyond the present outcrop area. This is 
the only locality in which the late andesite fragments were found east of its mapped 
exposures. Outcrops 3 miles south of San Lorenzo were not studied in any detail; it is 
thus possible that this rock is part of a different unit not recognized elsewhere in the area. 

The major part of the late andesite weathers to a dark brown. Megascopically, the 
rock is a black aphanitic porphyry with sparse, glassy, white, or green phenocrysts, 2 mm 
and less in size. Many elongated gas cavities are present. It varies from a massive rock to 
one with abundant conchoidal joints. 

Within the late andesite the following cyclical sequence of units may be 
differentiated easily: 

1. At the top: massive andesite, scoriaceous near the top, but less so down the 
section. 

2. Massive andesite with very abundant conchoidal joints. This is gradational with 
(1) above. 

3. At the bottom: agglomerates and tuffs, which consist of blocks and smaller 
fragments of a pumiceous andesite in a sandy matrix. This bottom unit is 2-15 feet thick 
and red, black, or light yellow in color. 
 

The thickness of one sequence varies from 20 to 50 feet, and similar sequences are 
repeated as one moves stratigraphically upward. Microscopically, the rock is 
porphyritic (phenocrysts 2 mm and 
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less in size), intersertal, and has a trachytic structure. The modal compositions are listed 
in Table 13. The plagioclase phenocrysts are zoned, partly resorbed, and embayed. Clear 
secondary overgrowths and myrmekitelike alteration of plagioclase are common. 
Pigeonite and augite form larger phenocrysts (2 mm and less) that are subhedral, 
rounded, fractured, and slightly altered. Hypersthene forms, smaller stubby prisms (0.2 
mm and less), chiefly in the groundmass of the hypersthene andesite (see table 13). 
Sparse olivine remnants have been almost completely replaced by a deep red-brown 
material, probably iddingsite. Biotite has been oxidized peripherally to an opaque 
hematitic material. In the andesite (table 13) there are sparse, large, well-rounded, and 
corroded quartz phenocrysts. They have a yellow-brown stain along the peripheral 
corrosion surfaces and are transected along conchoidal fractures by a yellow-brown 
colored zone. Many of the quartz phenocrysts are surrounded by thin rims of closely 
intergrown, fine-grained, acicular pyroxene, or by thicker zones of pyroxene grains. 

In addition to the modes given in Table 13, an analysis, norm, and mode of a 
specimen (389-C-87) of the late andesite is presented in Table 6. The appearance of 
labradorite in one mode (table 13), contrasted with its absence in the norm and other 
modes, along with the incipient reaction between the quartz and matrix to produce 
pyroxene, demonstrate again that many volcanic rocks have not attained chemical equi-
librium (see Faust and Callaghan, 1948, pp 29-33). 

TABLE 13. MODES OF THE LATE ANDESITE 
VOLCANIC UNIT 

HYPERSTHENE 

MINERAL 

ANDESITE 

ABUNDANCE 
(PERCENT) 

ANDESITE

MINERAL 
ABUNDANCE 
(PERCENT) 

Plagioclase (An61) 41. Plagioclase (An.) 14. 
Hypersthene 22. Pigeonite 6. 
Augite 1. Quartz 4. 
Sphene x Biotite 2. 
Magnetite 2. Magnetite 3. 
Olivine x Basaltic hornblende   x 
Iddingsite x Uralite 2. 
Calcite 1. Hematite 4. 
Sericite 1. Matrix 65. 
Matrix 32.   

x Indicates present. 
LOCATION OF SPECIMENS 

Andesite: 3 miles south of San Lorenzo, on the east bank of the Mimbres River, in the SW¼ sec. 5, 
R. 10 W., T. 18 S. 
Hypersthene Andesite: N. line, NE¼ sec. 17, R. 10 W., T. 17 S. 
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EARLY GRAVEL DEPOSITS 

These gravel deposits crop out over limited areas, primarily west of the western 
boundary of the late andesite volcanics (see pl 1). The maximum thickness in a single 
outcrop in the area studied is 211 feet. This was measured near its eastern extremity, and 
the thickness is probably much greater toward the center of the Mimbres Valley basin. 
The formation dips 8-25 degrees to the west or southwest. 

Cobble and pebble conglomerates, sands, and sparse clays comprise this formation. 
These deposits are light brown, slightly lithified, and show slight sorting and 
stratification. Well-rounded fragments of the tuffaceous rhyolite, and fragments of both 
andesitic volcanic sequences are common. Locally, small yellow-brown clayey lenses 
with abundant small (4 mm and less) angular fragments, possibly representing volcanic 
ash deposits, are found within the gravel. 

This unit is easily differentiated from the older arkosic sandstone, conglomerate, 
and tuff, previously described, by the presence of cobbles and smaller easily recognizable 
fragments of the late andesite. Combinations of the following criteria were used to 
differentiate the early gravels from the overlying late gravel (see fig 27): 

1. Better sorting and stratification. 
2. Locally, a greater lithification. 
3. Lighter color. 

 
Figure 27 

LATE TERRACE GRAVELS OVERLYING THE EARLY GRAVELS AND SAND IN 
GALLINAS CANYON. HEIGHT OF OUTCROP IS ABOUT 25 FEET. 
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4. Stratification truncated by the late gravels, or dips slightly steeper than those of 
the late gravels. 

5. Almost no boulders found. 
6. Late andesite fragments are less common than in the late gravels. 
7. Where the two gravels are in contact, the overlying late gravels are much 

coarser-grained and show poorer sorting (see fig 27). How-ever, toward the center of the 
Mimbres Valley, both gravels become finer-grained and are difficult to separate. 
 

Despite the criteria listed, the early and late gravels may be different facies of the 
same rock unit. If they are, the apparent unconformity may represent a truncated 
crossbedding. No soil zones were observed between these two gravels, but the matter was 
not investigated in detail. 

The early gravels contain fragments of the late andesite, and yet, 2½ miles north of 
San Lorenzo, the basal red pumiceous agglomerate of this andesite overlies the early 
gravels. The early gravels, therefore, must be contemporaneous with at least a part of the 
late andesite volcanics, whereas for the most part the late gravels overlie the late andesite. 
In terms of geologic age, the early gravels have been tentatively correlated with the Gila 
conglomerate of Pliocene age (described by Knechtel, 1936) along the Gila and San 
Simon Valleys in southeastern Arizona, on the basis of their stratigraphic position and 
their similar position in the regional geologic history. There is no certainty, however, that 
such a correlation should not be made with the late gravels also. W. Elston (forthcoming 
publication of the New Mexico Bureau of Mines and Mineral Resources) has correlated 
sediments equivalent to both the early and late gravels with the Santa Fe formation of the 
Rio Grande trough, inasmuch as these alluvial sediments can be traced laterally into the 
Rio Grande alluvial sediments. However, northwest-ward from the present map area, 
reconnaissance studies suggest that the early and late gravels (and Santa Fe fanglomerates 
of Elston) can be traced almost continuously into the alluvial sediments of the Gila 
drainage. 



Summary of Quaternary Deposits 
and Landforms 

The late gravel deposits are found only in the extreme western part of the mapped 
area, where they overlie the early gravels with a small unconformity. It appears that the 
major divides within the out-crop area of the late gravels all lie approximately on a plane 
surface sloping gently to the southwest. The dark-brown alluvial gravels, sands, and 
conglomerates which comprise this formation are poorly sorted and stratified. They dip 
approximately 5 degrees or less to the south-west. Closer to the Mimbres River, the late 
gravels are finer-grained. The most predominant constituent of the late gravels, west of 
the late andesite outcrops, are the late andesite fragments. East of the late andesite 
outcrops, the late gravels are composed primarily of tuffaceous rhyolite fragments. The 
basis for classifying the gravels east of the late andesite with the late gravels, when one 
criterion for identification of the post-Paleozoic sediments is composition, is discussed 
below. 

Two terraces which were mapped in the western part of the area are clearly visible 
on the aerial photographs. The high terrace, found only in the lower part of Noonday 
Canyon, is considerably dissected and lies at least 100 feet below the uppermost part of 
the late gravels. 

The low terrace is approximately 50 feet below the high terrace, where both are 
present, and has been only slightly dissected. West of the late andesite, this low terrace 
lies approximately 30-50 feet above the present stream level and is formed by the late 
gravels. The late gravels east of the late andesite are only 6-20 feet above stream level. 
Also, east of the late andesite, the low terraces are formed on 10 feet or less of poorly 
sorted, unstratified, coarse boulder and gravel conglomerate (similar to fig 27), which 
overlies the volcanic bedrock. If mapped in detail, several smaller terraces could be 
separated which have been included here within the low terrace. 

The low terrace truncates the late andesite and the tuffaceous rhyolite. It is 
concluded that the gravels capping the terraces east of the late andesite are 
contemporaneous with the late gravels in spite of their differing compositions, because of 
the continuity of the terrace levels. 

The stream beds are entrenched 5 feet or less in the recent alluvium. Small, nearly 
horizontal, alluvium-filled areas are common in the higher parts of the range, where 
streams have spread laterally in weak rocks. Most of the slopes in the area are 
precipitous, and the regional relief is more than 3,000 feet. Highway road cuts show 
concentrations of colluvium along the steepest part of the range, on the sides of nu-
merous moderately steep rock hills with thin mantle-rock cover. There is no obvious 
structural control of the landforms except in very limited areas. 



Major Structural Features 
Most of the structural features have been indicated in the discussions of the various 

rock units. Accordingly, this section should only integrate these features with the 
regional structural picture. 

The Black Range is a part of the Mexican Highland portion of the Basin and Range 
province (Fenneman, 1931). According to Gordon (Lindgren, Graton, and Gordon, 
1910, p 220), three genetic varieties of mountain structures are present, namely, (1) 
tilted crustal blocks, (2) upthrust granitic cores, and (3) accumulations of volcanic 
material. Gordon even states, "Of the second type are the Black and Mimbres (Black) 
Ranges, in which the uplifted strata slope away on both sides from a central mass of 
granite." However, in the Kingston area the almost continuous outcrops afforded by 
State Highway 180 (which Gordon did not have) show no central granite core, but rather 
many small Precambrian blocks and notable faulting and folding, as is illustrated by the 
map and section (pl 1). 

The early andesite volcanic sequence and all older rocks were folded slightly into a 
series of open asymmetrical folds (pl 1). The fold axes range from N. 33° E. to N. 35° 
W., and plunge from 7 to 20 degrees northward. 

Because of the small amount of folding and the absence of more than minor folds 
in adjacent areas of New Mexico, it seems most likely that both folding and faulting 
occurred during the same phase of tectonic activity. Normal faulting and folding are 
generally considered as evidences of regional tension and compression, respectively. 
How-ever, it is known that faulting or tilting of resistant rocks of the basement complex 
can modify the structural orientation of overlying sediments. Examples of gravitational 
adjustment to stable underlying rocks are voluminous (see Hills, 1943, pp 12-19). 

North of the Lady Franklin mine a small volume of sediments has been synclinally 
folded between two large masses of Precambrian granite (see pl 1). Just to the east of the 
eastern granite mass, the sediments show no folding, but dip more steeply eastward 
close to the granite. Localized moderate folding suggests adjustment to basement-
complex topography, or structural modification due to the igneous intrusion, rather than 
compression. The local variability in fold axes does not indicate a regional compression. 
In areas immediately to the east of the mapped area, up to and including the Animas 
Hills (near Hillsboro), and to the west in the Silver City region (Paige, 1916), there is no 
evidence of major compressional stresses. For these reasons, it is concluded that the 
folding in this area was produced by the adjustment of the weaker tabular rock bodies to 
the faulted and warped upper surfaces of the resistant basement rocks, with possible 
assistance from igneous intrusive forces. 

The high-angle normal faulting is not restricted to those larger faults illustrated in 
Plate 1. Chert nodules in limestone in many outcrops show normal faulting, in which the 
apparent displacement is 4 inches and less, and where the surrounding limestone shows 
no evidence of 
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any fault. Small grabens and horsts with apparent displacements of from 2 to 10 feet are 
common, as are normal faults with apparent offset of 20 feet and less. Apparently the 
Percha shale was able to adjust itself plastically to much of the faulting, inasmuch as 
many of the small faults in the Fusselman and older rocks do not extend stratigraphically 
higher than the basal Percha shale. Faults are, therefore, more numerous in the lower 
Paleozoic than in the upper Paleozoic rocks. Wherever direction of movement can be 
ascertained on a fault zone, the motion appears to have been predominantly dip-slip in 
direction. Along the major north-south faults, the west block has been downdropped 
relative to the east block, as adjacent stratigraphic horizons indicate. 

Before or during the quartz monzonite intrusion, the rocks of this area had 
undergone considerable high-angle faulting. Presumably because of the crustal weakness 
in faulted and fractured zones, these zones became favored loci for igneous emplacement. 
Such igneous bodies have nearly vertical contacts, and their distribution has no apparent 
relationship to the sedimentary rocks. 

Distribution of the conformable parts of the quartz monzonite is probably related to 
the presence of shale horizons. Two possible causes of the lateral spreading of the quartz 
monzonite might be that the units with a large shale content were less competent and 
rigid with respect to the resistance offered the intrusive pressures, or that, at these upper 
horizons of the Paleozoic stratigraphy, the weight of the overlying rocks was insufficient 
to prevent the lateral spread of the igneous magma. At the time of intrusion, the 
sediments were covered by an estimated 400 feet (minimum) of the first volcanic 
sequence. If the lack of overburden were a dominant factor, all of the higher stratigraphic 
horizons should display an even greater irregularity in their position with respect to the 
quartz monzonite porphyry. The fact that the shale units were intruded, whereas the 
overlying or underlying massive limestone units were not, suggests that the weight of the 
over-burden was not the primary factor. In addition, the intrusion appears to have domed 
the enclosing sediments in a laccolithic manner. Lindgren, Graton, and Gordon (1910, pp 
40-41) have mentioned many other laccolithic domes, sheets, and sills found in various 
sedimentary horizons in New Mexico. 

The properties of the shale horizons which may have made them more conducive to 
igneous intrusion should be considered. Inasmuch as the bedding of all the Paleozoic 
sediments is approximately parallel, the shales would not be favored as intrusion loci as a 
result of their structure. However, a certain structural attitude of the sediments may have 
been important in determining whether crosscutting or conform-able igneous bodies 
would be formed. Thus, given a certain structure of the sediments, the shale horizons 
would be favored for the intrusion of conformable igneous masses because of differences 
in the intrinsic properties of the shales and the other sediments. In a geologic sense, the 
intrinsic properties of the shales, a function of composition, differ from the other 
sediments in their smaller rigidity, smaller shear strength, and in their greater anisotropy. 
The consequences of this are that in small-scale intrusions or in the peripheral regions of 
large 
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intrusions, differences in the mechanical properties of the country rocks may determine 
the loci of the igneous rocks. 

The problem of how the quartz monzonite porphyry acquired the space which it 
now occupies cannot be solved, except in a manner which has not been considered 
adequate in previous geologic cases; namely, that the quartz monzonite magma made 
room by pushing the shales away. The shales are completely missing in most places, 
although not all of these shale units have been displaced by the quartz monzonite 
porphyry. Near a shale-quartz monzonite contact, the shale is considerably brecciated. In 
many localities the shale encloses thin anastomosing sills and dikes of the quartz 
monzonite porphyry. Microscopic examination of the quartz monzonite-shale contacts 
shows a slight flow structure parallel to the contacts, but no evidence of assimilation. 
Megascopically and microscopically, the shales show no contact effects, with the 
possible exception of a darker, more opaque shale matrix. In the light of the intimate 
penetration of the shale and the shale brecciation near the quartz monzonite contact, it is 
suggested that the magma squeezed out the shale by plastic flow. Such a room-making 
process in sills where flow structures are apparent has been illustrated by Tweto (1951, 
fig 13). To illustrate this hypothesis, the thickness of the shale horizons in several parts of 
the cross-section (see pl 1) has, been noticeably increased. 



Ore Deposits 
No careful study of the metal mines of the Kingston area was attempted in the 

course of the field work which forms the basis of this report. All the mines were idle, and 
only a small proportion of the original workings remains accessible. The main purpose of 
this study was to determine, insofar as was possible, the relation of former ore 
occurrences to the intrusive quartz monzonite and to the structure and stratigraphy that 
was worked out in the course of the mapping, with the hope that certain general guides to 
future exploration in this part of the Black Range might be established. The scale of the 
map (pl 1) is not sufficiently large to represent all the intricate structures and 
relationships that occur along the explored ore zones. 

The general features of the mineral deposits, taken largely from the historic record 
(Lindgren, Graton, and Gordon, 1910; Harley, 1934), from individuals who have mined 
in . the area, notably Messrs. T. B. Everhart, K. A. Strand, James I. Moore, and G. 
Lotspeich, and from such observations as were made by the author, may be stated as 
follows: 

The Kingston district had its greatest production, amounting to over $6,000,000, 
almost. entirely in silver and minor gold, between the time of its discovery in 1880 and 
1893, when the decline in the price of silver, together with other problems, led to the 
closing of the mines. They have been worked sporadically since, but only on a small 
scale. 

The main productive area was in Paleozoic rocks a mile to the northwest and west 
of Kingston, where the Lady Franklin, the largest producer, the Black Colt, Comstock, 
the Iron King, and United States mines are located (see pl 1 and fig 28). Sulfides of 
copper, lead, zinc, iron, silver (minor), and manganese, and the corresponding oxidized 
minerals, were mined from high-grade discontinuous veins and pockets, primarily for 
their silver and gold content. Recent mining activity has produced manganese oxides 
from small open pits, where the oxides are weathering products from primary rhodonite, 
rhodochrosite, and minor alabandite (specimen from Mr. T. B. Everhart) in veins and 
replacement bodies in limestone and dolomite. Examination of old mine maps and 
current mining operations shows that ore deposits are found not only in the Silurian 
Fusselman dolomite and Upper Ordovician Montoya limestone, but also in the Lower 
Ordovician El Paso limestone. 

The Gray Eagle mine (see pl 1 and fig 28), 3 miles southwest of Kingston in the 
deep canyon on South Percha Creek, has produced copper, lead, and zinc in the 
proportion of 1:3:4½ in terms of reconverted metal, and gold and silver in a ratio of 
1:446 in shipments of 1,535 tons during 1943. Production has been from discontinuous 
veins (and possible replacement bodies) in the El Paso limestone. 

The Grandview (see pl 1) and nearby mines, west of the crest of the Black Range 
and about 6 miles southwest of Kingston, shipped during the years 1924 and 1938-1944 a 
total of 22,079 tons of ore containing a copper-lead-zinc metal ratio of 1:19:37, and a 
gold to silver 
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Figure 28. PATENTED CLAIMS OF THE BLACK RANGE (KINGSTON) MINING 

DISTRICT. 
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ratio of 1:1,000. Production was from veins and replacement bodies in the Fusselman and 
Montoya, just east of a major north-south fault. 

Future possibilities may be summarized as follows: High-grade ore has been found 
in discontinuous pockets in veins (along faults or fissures) and replacement bodies in the 
Fusselman, Montoya, and El Paso limestones and dolomites, which would, barring 
erosion, underlie the Percha shale. Unless methods can be designed for mass treatment of 
low-grade ores disseminated throughout sedimentary rocks, it seems likely that small-
scale operations will continue to be most successful. 

Harley noted (1934, p 105) that most of the value of the ore was dependent on 
enrichment by weathering and other secondary processes. Certainly it is true today that 
manganese ores cease to be profitable when mining has proceeded to the rhodonite and 
rhodochrosite zones; therefore, secondary enrichment may limit future mine production. 

Examination of Plate I shows that the carbonate rocks are domed or arched slightly 
near the Gray Eagle, United States, Iron King, and Lady Franklin mines, and in addition 
are faulted even more intricately than may be depicted on the map scale. Near these 
mines (northeast of the Gray Eagle, east and south of the United States mine, southeast 
and west of the Iron King mine, and almost all around the Lady Franklin mine) are large 
sills of the intrusive quartz monzonite porphyry. If no erosion had occurred, it is entirely 
possible that a part of the sill would overlie the mining areas. Future exploration for ore 
deposits not now exposed at the surface might well be directed toward areas of arched or 
domed Paleozoic rocks, or areas covered by sill-like intrusive bodies. Additional surface 
exploration might be undertaken in the area west of the crest of the range and between 
Silver Creek and State Highway 180, where the Magdalena limestone and older rocks are 
moderately folded. 
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Serpentine, 13, 22, 41 
Shale horizons as intrusion loci, 35-37 
Sierra County, 3, 29 
Silica enrichment, 72, 73, 74, 76, 78, 81 
Silicification, 13, 14, 15, 16, 20, 22, 23  
Sillar, 48, 49 
Sill horizons and localities, 5, 36, 88, 89  
Sills, 5, 35, 36, 88, 89 
Silurian system, 5, 12, 14, 18 
Silver Creek, 11, 92 
Skeleton crystals, 53, 54, 56, 58, 59 
Smith, Robert L., 49 
Socorro County, 76 
Soda-potash ratio, 73, 74, 75-76 
Sonoro trough, 27, 28 
South Percha Creek, 6, 11, 16, 22, 90, 91 
Space problem, 89 
Standard rock cell, 71, 72, 73 
State Highway 180, 3, 20, 24, 26, 32, 82, 87, 

91, 92 
Strand, K. A., 90 
Stratigraphic sections: 

Cambrian, 14 
Devonian, 21 
general, 4, 5 
Mississippian, 13, 21 
Ordovician, 14 
Pennsylvanian, 13, 17, 21 
Permian, 25 
Quaternary, 5 
Silurian, 14 
Tertiary, 5 

Stream beds, 86 
Structures, major features, 87-89  

linear, 6, 43, 48, 49 
orientation of, 6, 8, 43 
planar, 6, 43, 48, 62, 67 

 
Temperature: 

rim formation, 7, 75, 78 
significance of hornblende and biotite, 47, 

48, 49, 50 
tuffaceous rhyolite, 49, 50 

Terminology of volcanic rocks, 31  
Terraces, terrace gravels, 5, 86  
Terrestrial sediments, 5, 26, 27-28, 29- 

30, 81-82, 84-86 
Tertiary, 5 

chronology, 29 
conifer flora, 29 
history, 29 
lake beds, 29 
land surface at base of, 29-30 
pegmatite, 79-81 
sediments, 29, 30, 81-82, 84-85, 86 
sequence, 29-85 
volcanic rocks, 29-35, 42-50 

Thickness, 5 
sediments, 11, 12, 18, 19, 20, 23, 26, 82, 84 

volcanic accumulations, 30, 42-43, 82  
Tierra Blanca member, 20  
Topography, post-Permian, pre-Tertiary, 29-

30 
Tuffaceous rhyolite, 5, 29, 42-50, 63-66, 86 
compared with rhyolite porphyry, opposite 

49, 51 
contacts, 42 
definition, 48, 49 
depositional temperature, 49-50 
distribution, 42 
glassy phase, 44 
joints, 43 
pyroclastic facies, 44 
texture, 45 

 
Unconformity, 26, 29-30, 31  
United States mine, 18, 90, 91, 92 
Upper Ordovician, 15-16, 18 
 
Valley-fill, 5 
Veins: 
in Precambrian, 8, 10 
ptygmatic, 6, 8 
quartz, 8 

Vitaliano, C., 79 
Vitrophyre, see also Glass, volcanic  
black, 44, 62, 63-66, 67, 68, 70, 71, 72, 73, 

76-79 
compared with rim, 68, 69, 72, 73, 74 
green, 53-60 
matrix of, 67, 68, 73, 74 

Volcanic glass, see Glass, volcanic  
Volcanic rocks, see also Igneous rocks, 
extrusive, 3, 4, 5 
criteria for differentiation of, 32, 35 

Volcanic series, Rocky Mountain, 29 
 
Weathering, silty limestone, 23 
Weber, R. H., 76 
Welded tuff, 5, 48, 49 
Weller, J. Marvin, 19, 22, 23 
Wolfcamp series, 26, 27 
Wollastonite, 13, 20, 41 
Woodford black shale, 19 
Worm tubes, 15 
Wright's Cabin campground, 26 
 
Xenoliths, 8, 43, 48, 60-62, 67, 68-71, 81 
origin of, 62, 67  

Xenomorphic-granular, phase of rhyo- 
lite porphyry, 51, 52, 81 

X-ray determinations, 4, 73, 74, 75, 80, 81 

Yeso formation, 27 
Zeolites, 34-35, 65, 80 
Zones: 
rhodonite and rhodochrosite, 92 vent 
agglomerate, 67 
xenolith, see Xenolith zones 




	Title Page
	NM Bureau of Mines and Mineral Resources, and Board of Regents
	Contents
	Abstract
	Introduction
	Acknowledgments
	Precambrian sequence
	Introduction
	Graywacke
	Granite
	Metadiabase

	Paleozoic stratigraphy
	Introduction
	Cambrian (?) system
	Ordovician system
	El Paso limestone
	Montoya limestone

	Silurian system
	Devonian system
	Mississippian system
	Pennsylvanian system
	Permian system
	Summary of the Paleozoic strata

	Tertiary sequence
	Introduction
	Andesite, latite, and their quartzose equivalents
	Quartz monzonite porphyry
	Contact metamorphism and mineralization
	Rhyolitic igneous rocks
	Tuffaceous rhyolite
	Rhyolite porphyry
	Small rhyolitic intrusive masses
	Xenolith zones
	Endomorphic effects of xenoliths in volcanic glass
	Rabb Canyon pegmatite area

	Summary of the rhyolitic igneous rocks
	Sandstone, conglomerate, and tuff
	Late andesite
	Early gravel deposits

	Summary of Quarternary deposits and landforms
	Major structural features
	Ore deposits
	References
	Index
	Illustrations
	Tables
	1.  Estimated modes of the Precambrian plutonic rocks
	2.  Classification of the Paleozoic strata in the Kingston area
	3.  MInerals of the quartz monzonite porphyry
	4.  Optical properties of feldspars of the quartz monzonite
	5.  Average modes of the rhyolitic rocks
	6.  Analyses, norms, and modes of igneous rocks of the Kingston area
	7.  Size measurements on xenoliths and crystalline rims
	8.  Compositional differences between the vitrophyre, rim, xenolith, and "normal" quartz latite
	9.  Direction and relative magnitude of the compositional differences between the rim and its surroundings, and the xenolith and "normal" quartz latite
	10.  Soda-potash content of the matrices of teh rhyolite vitrophyre and the crystalline rim
	11.  X-ray data on the sanidine phenocrysts and the matrix in the crystalline rim
	12.  Feldspars of the Rabb Canyon pegmatite area
	13.  Modes of the late andesite volcanic unit

	Figures
	1.  Generalized rock section of the Black Range at Kingston
	2.  Bent plagioclase in Precambrian granite
	3.  Shredded hornblende in Precambrian metadiabase
	4.  Straigraphic Section I
	5.  Stratigraphic Section II
	6.  Stratigraphic Section III
	7.  Stratigraphic Section IV
	8.  Stratigraphic Section V
	9.  Interbedded flows and tuffs of the early andesite
	10.  Plagioclase phenocrysts in the quartz monzonite porphyry
	11.  Plumose and normal texture of tuffaceous rhyolite
	12.  Phenocrysts of tuffaceous rhyolite
	13.  Clear and clouded sanidine phenocrysts in tuffaceous rhyolite
	14.  Xenomorphic-granular phase of rhyolite porphyry
	15.  Perthie, quartz, and spherulitic plagioclase in rhyolite sill
	16.  Green vitrophyre dike in andesite
	17.  Green vitrophyre enclosed by rholite rim in andesite
	18.  Granophyric and quartz phenocrysts in green vitrophyre
	19.  Phenocryst aggregate in glass matrix
	20.  Granophyric intergrowth in glass matrix
	21.  Plagioclase with sanidine and granophyric overgrowths in glass matrix
	22.  Corroded quartz phenocrysts in glass
	23.  Rimmed andesitic xenolith partially enclosed by rhyolite vitrophyre
	24.  Crystalline rim
	25.  Rhyolite vitrophyre
	26.  Variation of xenolith size with size of crystalline rim
	27.  Late terrace gravels overlying the early gravels
	28.  Patented claims of the Black (Kingston) mining district

	Plates
	1.  Index map, geologic map, and cross section
	2.  Spheroidal masses and cavities in the Montoya limestone
	3.  Polished surfaces of rhyolitic igneous rocks





